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Preface

A workshop on beam-beam interactions in circular colliders was held at

Fermilab from June 25-27, 2001. Twenty five participants from eleven differ-

ent institutions representing hadron and electron-positron accelerators, and

universities attended. This workshop was a direct successor to a similar

workshop held at CERN in April 1999. It was motivated by the emergence

of new regimes of interest in present and future colliders and the need to

review the progress made since 1999. In the Tevatron and the LHC, long-

range interactions and schemes to compensate them have emerged as the key

theme. In e+ − e− colliders, the beam-beam limit and lattice modifications

to increase this limit are active areas of interest. Coherent phenomena are

very important in e+− e− colliders and they are expected to be significant in

future hadron colliders. All of these topics were addressed by the speakers.

After plenary talks on the opening day, talks and discussions were organized

into five working groups:

• Observations at existing colliders, chaired by A. Temnykh

• Beam-beam compensation schemes, chaired by W. Herr

• Coherent phenomena, co-chaired by J. Rogers and M. Vogt

• Weak-strong phenomena, chaired by J.P. Koutchouk

• Theory and simulations of strong-strong interactions, chaired by J. El-

lison

The workshop closed with summary talks from the session chairs. The talks

and written reports may be found at the website:

http://www-ap.fnal.gov/˜meiqin/beambeam01/beambeam01.html

We thank all the participants for making this workshop a success. We also

thank S. Holmes, J. Cooper and M. Shaevitz from the Fermilab directorate

for providing the financial support that made the workshop possible. Finally,

it is a pleasure to thank the workshop secretaries: V. Stazak, R. Becker, C.

Kowalik and J. Sullivan for their able adminstrative help and for ensuring

that the workshop ran smoothly.

Tanaji Sen and Meiqin Xiao

Editors
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SECTION I: Observations of beam-beam
phenomena in colliders
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Beam-beam issues in the LHC and relevant experience from the SPS proton
antiproton collider and LEP

W. Herr CERN, SL Division

Abstract

The beam-beam effects observed in SPS and LEP in var-
ious operational modes are reviewed. Special emphasis is
put on effects relevant for the LHC. This includes orbit ef-
fects, crossing angle and PACMAN effects.

1 INTRODUCTION

In the LHC we have to expect numerous effects due to
the beam-beam interactions. It is worthwhile to consider
the experience gained running the SPS collider and LEP
and use it in LHC studies where relevant knowledge is
available [1, 2, 3]. The SPS was run approximately 10
years as a proton antiproton collider and the first hadron
collider where long range beam-beam effect became im-
portant. LEP as an electron positron collider is very differ-
ent from the LHC. The strong damping at its highest energy
of 94.5 GeV allows beam-beam strength parameters up to
0.075, i.e. approximately 20 times larger than the expected
values for the LHC of around 0.0034.

In SPS and LEP the two colliding beams had unlike
signs, i.e. they travel in the same vacuum chamber on (a
priori) identical orbits. However, both machines were run
in various modes of operation and some of the observed
features can be found again in the LHC, such as:

• Parasitic crossings for all modes of operation

• Orbit effects due to beam-beam kicks

• Effects from bunch trains

• PACMAN effects due to different types of beam-beam
interactions

• Strong-strong beam-beam effects

• Coherent beam-beam effects

• Crossing angles

One can therefore hope that the concepts developed and
tested for SPS and LEP can be applied to the LHC.

2 LHC LAYOUT

The conceptual layout of the LHC is shown in Fig.1. The
two beams travel in two separate rings and cross over in
the four experimental areas in interaction regions 1, 2, 5
and 8. To avoid unwanted interactions, crossing angles are
used in these areas. To compensate first order long range
effects, the crossing takes place in the horizontal plane in

IP1

beam2beam1

IP3

IP8

IP5

IP6

IP7

IP4

IP2

Figure 1: Layout of LHC beams and collision points.

interaction regions 5 and 8 and the crossings in 1 and 5 are
in the vertical plane.

3 SPS, LEP AND LHC PARAMETERS

A comparison of the most important SPS, LEP and LHC
parameters is made in Tab.1. A few significant differences
can be seen from Tab.1. The number of bunches per beam
in the LHC is orders of magnitude larger than in SPS or
LEP and consequently also the number of parasitic encoun-
ters. The damping time in both hadron machines, SPS and
LHC, can be neglected compared to the very fast damping
time in LEP of less than 4 ms at its highest energy. Another
feature of the LHC is a finite crossing angle that is required
to separate the beams. In SPS and LEP the crossing angles
were unintentional and very small, except in dedicated ex-
periments. The number of experiments is comparable and
the 2+(1) for the SPS indicates 2 experimental areas plus
one unavoidable head on collision. The SPS collider was
also operated with 3 bunches per beam without separation,
i.e. 6 head on collisions, but this mode of operation will not
be considered here since it is not relevant for LHC studies.
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Table 1: Comparison of SPS, LEP and LHC parameters at high energy in collision

SPS LEP LHC
Bunches per beam 6 4 - 16 2808
Experiments 2+(1) 4 4
Parasitic interactions 9 4 - 28 120
∆Q (ξ)/ IP 0.0050 0.0450 (0.0700) 0.0033
Damping time - 0.004 s 105 s
Full crossing angle α small small 300 µrad

4 SPS AND LEP MODES OF OPERATION

4.1 SPS operation with pretzel scheme

When the SPS collider was operated with 6 bunches per
beam, a horizontal pretzel scheme was used to separate the
beams at the unwanted collision points (Fig.2). This pret-

IP 6

IP 1

IP 2

IP 3

IP 4 - UA2

IP 5 - UA 1

antiproton orbit for operation
with 6 * 6 bunches

electrostatic 
separators

electrostatic 
separators

proton orbit for operation 
with 6 * 6 bunches

Figure 2: SPS operation with horizontal pretzel scheme and
6 bunches per beam.

zel extended over 5 of the 6 sectors and allowed head on
collisions in the two main experiments UA1 and UA2 and
an unwanted head on collision in between. During collid-
ing beam conditions the beams were separated by about
6 σ at the unwanted collision points. For injection a single
separator created a orbit distortion around the whole ring
providing separation between 1.5 to 6 σ at the 12 crossing
points.

4.2 LEP operation with bunch trains

During the last 6 years of its operation, LEP operated
with bunch trains and although it also successfully used
a horizontal pretzel scheme with 8 bunches per beam, I
shall concentrate on its operation with bunch trains since
this scenario gives more information relevant for the LHC.

To allow more than eight bunches per beam, a bunch train
scheme was developped and installed in LEP [17, 18]. The
basic idea is to start from the original four bunch scheme
and to replace a single bunch by a short train of bunches.
This requires a local separation at the unwanted collisions
around the nominal collision point. A horizontal crossing
angle was abandoned for background considerations and a
local vertical separation was installed, using already exist-
ing separators in the interaction area. The principle of this

e

e

+

-

Y

X

unwanted collisions

Figure 3: Principle of bunch train separation in LEP.

mode of operation is shown in Fig.3.

5 HEAD-ON BEAM-BEAM EFFECTS

The most basic beam-beam effects are due to the
(wanted) head on collisions. Some of the results from the
SPS collider are worth mentioning here. The working dia-
gram of the SPS together with the tune footprints is shown
in Fig.4. At injection energy the tune spread of the pro-
tons is dominated by the space charge tune spread of about
∆Qh ≈ −0.03 and ∆Qv ≈ −0.05 which is much
larger than their beam-beam tune spread. The tune spread
of the antiprotons is mainly due to the beam-beam effects
from the protons and has opposite sign (Fig.4). In collision
the total spread was about 0.015 to 0.018 and the life time
was limited by high order beam-beam resonances since the
footprint in collision is crossing the 13th and 16th order
resonances. This is true in particular when the beam sizes
of the two beams were not equal.
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variation in our calculations.

5.2 Dynamic β effects

The beam-beam force changes the β-function at the col-
lision point and as a result the optics is modified. The real
tune shift ∆Q depends on this ’dynamic β’ effect which de-
pends on the optical parameters. Only in the limit of small
values of the beam-beam parameter ξ and for tunes well
above the integer the tune shift can be approximated by ξ.
During the last few years of LEP operation this dynamic
β effect became important. The unperturbed beam-beam
parameter was in the order of 0.07 to 0.08 per interaction
point and the phase advance between two interaction points
was just above the integer (fractional tune 0.19 and 4 inter-
action points). The actual tune shift was therefore in the
order of 0.04 [4]. The beating introduced around the ma-
chine was rather substantial leading to a reduction of β ∗

from 5 to ≈2.5 cm. Together with small phase advance er-
rors (a few degrees are sufficient) between the interaction
regions, a substantial difference of β∗ between the inter-
action points has to be expected, and was manifested in a
regularly observed luminosity imbalance between the four
experiments. With the nominal parameters a noticable dy-
namic β effect is not expected in the LHC.

5.3 Synchrobetatron resonances

The finite crossing angle or a non-zero dispersion at the
collision point can couple the longitudinal and transverse
motion via the beam-beam interaction. This leads to the
excitation of synchro-betatron resonances. The strength
of the coupling due to a crossing angle can be expressed
through the normalized crossing angle (or Piwinski an-
gle) which is α · σs

2σz
≈ 0.7 for the nominal crossing

angle of 300 µrad for the LHC. Resonances of the type
nQx+mQy → nQx+mQy+rQs are excited and should
show as additional lines in the tune spectrum. The ef-
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Figure 8: Simulation of synchrobetatron resonances due to
finite crossing angle.
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Figure 9: Simulation of synchrobetatron resonances due to
finite dispersion at interaction point.

fect of the crossing angle was simulated [5] and a tune scan
with and without a crossing angle is shown in Fig.8. This
simulation shows the appearance of synchrotron sidebands
next to the main resonance lines but also a new resonance
can be observed. For a strictly head-on beam-beam col-
lision of round beams only even order resonances can be
excited due to the symmetry of the system. This symmetry
is broken either by long range interactions or by a crossing
angle as demonstrated in Fig.8. The Fig.9 shows a simi-
lar scan but now for a non-zero dispersion at the collision
point (Dx = 0.10 m). It can be derived [5] that a residual
dispersion of 0.10 m is equivalent to a crossing angle of
300 µrad, i.e. excites synchro-betatron resonances with the
same strength. Although these resonances have to be ex-
pected in the LHC, the synchrotron tune (Qs = 0.00212) is
very small compared to lepton accelerators (e.g. LEP Q s =
0.10) and therefore the sidebands are very close to the main
resonance line. The required space in the tune diagram is
therefore hardly increased.

6 LONG RANGE BEAM-BEAM
EFFECTS

Around the experimental regions the LHC beams travel
in a common vacuum chamber and therefore experience the
fields of the opposing beams, so-called long range interac-
tions. The number of these parasitic encounters depends
on the lengths of the common regions before the beams
are sufficiently separated by dipole magnets and the bunch
spacing. For the LHC we calculate 15 long range interac-
tions on either side of the four collision points, i.e. we have
approximately 120 distant interactions.

The effect of these interaction depends mainly on the
separation, normalized to the transverse beam size. It can
be shown that in the drift space between the collision point
and the first focussing element this normalized separation
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is constant:

dsep ≈
αβ∗

σ∗ =
α
√

β∗√γ√
ε∗

= const. (1)

The long range interactions are therefore most important in
the high luminosity, i.e. low β∗ interaction regions. Al-
though increasing the crossing angle α can improve the
separation easily, other considerations have to be taken into
account which limit this angle. Too large angles reduce the
luminosity, require more aperture, strongly excite synchro-
betatron resonances and bring the beams into the more non-
linear part of the quadrupole fields of the insertion magnets.
The present crossing angle of 300 µrad is a compromise be-
tween the different requirements.

6.1 Beam separation

To provide the required crossing angles, dedicated dipole
magnets are used which act either on both or individual
beams [6, 7]. An example of such a crossing angle bump
is given for one beam in Fig.10. The orbit of the counter-
rotating beam is antisymmetric around the central collision
point. During injection, the beams are also separated in
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s (m)

δ E/ p 0c = 0 .

Table name = TWISS
[*10**(  3)]
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 lhc version 6.0  collision optics (thick lens  thin not  &              availab
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) y

Figure 10: Vertical bump for crossing angle.

the second plane by a parallel bump of a few mm, ensur-
ing that the normalized separation is never smaller than ap-
proximately 14 σ. Such a parallel bump is shown in Fig.11.

6.2 Dynamic aperture

The beam-beam effects decrease the available dynamic
aperture of the LHC beams at injection and in collision, ei-
ther alone or in combination with the non-linearities of the
LHC lattice. Since this subject is treated in a different pre-
sentation [13] as well as simulations of the improvement
of the dynamic aperture [14] using a long range compen-
sation scheme [15], I do not give details on that subject in
this report.

6.3 PACMAN effects

An effect which is expected to play a very important role
is caused by the bunch filling pattern of the LHC, leading to

250. 300. 350. 400. 450. 500. 550. 600. 650. 700. 750. 800. 850.
s (m)

δ E/ p 0c = 0 .

Table name = TWISS
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HP/UX version 8.22/14 05/07/99  15.01.00

-.0020
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x 
(m

) x

Figure 11: Horizontal bump for parallel bump at injection.

so-called PACMAN effects. The nominal bunch filling pat-
tern of the LHC is shown in Fig.12. The pattern exhibits a

......

72   bunches

∆ t 3∆ t 2 ∆ t 1

∆ t 1

∆ t 2 

∆ t 3

∆ t 4

8  bunches  missing

38  bunches missing

119   bunches missing

total number of bunches:   2808

39  bunches missing

∆ t 4

Figure 12: Bunch filling scheme for the LHC.

fourfold symmetry and has 39 batches of 72 bunches each,
i.e. in total 2808 bunches of a maximum possible of 3564
are filled. The gaps between the batches are required for
the injection and extraction kickers of the LHC injectors
and a large gap at the end is needed to allow for the rise-
time of the kicker of the beam dumping system. Ideally

������
������
������
������
������

������
������
������
������
������

Head-on
Long-range

Figure 13: Origin of PACMAN effects.

the holes in the bunch train of one beam should meet holes
of the other beam. This is true for the head-on collisions
in interaction points 1 and 5. However the bunches at the
beginning and end of a batch miss long range interaction ei-
ther before or after the head-on collision (see Fig.13). This
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left-right asymmetry cannot be avoided. In the worst case,
i.e. for the first or last bunch of a batch, only half of the
long range interactions are encountered [16]. Furthermore,
in collision points 2 and 8 the large dump gap will meet
a full batch and reduce the number of long range colli-
sions of some bunches further. The maximum and mini-
mum numbers of parasitic encounters become 120 and 40,
respectively. Due to this gap some bunches will miss also
head-on collisions. The interaction point 8 is moved longi-
tudinally by 3 half bunch spacings, adding further missing
head-on collisions to the interaction schedule and leaving
bunches with only 2 out of 4 nominal head-on collisions.
It is clear that all these bunches experience a very different
accumulated beam-beam effect which may lead to different
dynamics and, in the worst case, different life times. For
beam measurements it is also important to have a repro-
ducible reference and ideally one should use the nominal
bunches.

To evaluate the strength of beam-beam interactions, a
standard tool is to compute the tune footprint, i.e. the
two dimensional tune shift as a function of the amplitude.
Such footprints are shown in Fig.14 where I show the foot-
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Figure 14: Footprints for head-on and long range interac-
tions for nominal (black) and PACMAN bunches (red).

print for nominal bunches (i.e. bunches with all head-on
and long range interactions) and the extreme PACMAN
bunches (i.e. minimum number of long range interactions).
The footprints are computed for the nominal parameters
and bunch intensities. Although not visible, the effect of
alternating horizontal and vertical crossing is all impor-
tant since they compensate for the first order tune shift [1].
With all crossings in one plane the footprint of PACMAN
bunches would be shifted rather far from the nominal and
thus produce a very large operational tune spread. The
bunches with one or more missing head-on collisions do
not show in Fig.14 since for those the overall head-on part
of the footprint just scales down and is therefore inside the
nominal area.

6.4 PACMAN effects with bunch trains in LEP

It can be shown that operating LEP with bunch trains
exhibits all properties of PACMAN effects. The separated
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Figure 15: Vertical separated orbits for bunch train opera-
tion around IP 4 for 45.6 GeV and central collision

orbits of electrons and positrons around an experimental
region is shown in Fig.15. While the central collision is
head-on, the parasitic encounters have to be accommodated
inside the separation bumps (Fig.15). This determines the
parameters such as bunch spacing and number of bunches
per train. The design allows a maximum of four bunches
per train, spaced by 87 RF wavelengths, i.e. three parasitic
collisions have to fit into the separation bumps on each side.

The left half of such a bump in an experimental region
is shown again in Fig.16 together with the position of the
parasitic encounters and the separation, normalized to the
local horizontal beam size σx. The central collision point
is at the right hand side of the figure and the horizontal
axis gives the distance from the collison point. The figure

x8

σx15

σ
σx4

Figure 16: Vertical separated orbits and normalized sepa-
ration for bunch train operation around IP 4

shows the situation when the bunches collide in the centre
and for 45.6 GeV. For injection, the central collision has
to be separated as well, imposing some constraints on the
choice of the separation scheme. It further has to allow the
fine adjustment of the head-on collision. Contrary to the
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Table 2: Separation and parasitic beam-beam strength ξ
for parasitic collisions around IP 4 (for: εx = 30 nm,
Ib = 500 µA)

3 2 1
d/σx ≈ 8 ≈ 15 ≈ 4
ξx (10−3) ≈ 0.8 ≈ 0.2 ≈ 3.6
ξy (10−3) ≈ -4.8 ≈ -0.7 ≈ -0.3

four bunch case, the separation bumps cannot be switched
off during physics fills. The separation and the parasitic
beam-beam tune shift is summarised for the three parasitic
collisions in Tab.2. A horizontal emittance of 30 nm and a
bunch current of 500 µA was used for the calculation. It is
shown that in particular the outmost collision point gives
the largest vertical tune shift while the other encounters
give significantly smaller values. The Fig.17 and Tab.3

x20>

σx8

σ

σ
x25

σx13

Figure 17: Vertical separated orbits and normalized sepa-
ration for bunch train operation around IP 3

Table 3: Separation and parasitic beam-beam strength ξ
for parasitic collisions around IP 3 (for: εx = 30 nm,
Ib = 500 µA)

3 2 1 0
d/σx ≈ 13 ≈ 25 ≈ 8 ≥ 20
ξx (10−3) ≈ 0.3 ≤ 0.1 ≈ 0.7 ≈ 0.1
ξy (10−3) ≈ -0.2 ≈ -0.5 ≈ -0.2 ≈ -0.1

show the bump and tune shifts for a typical unused (i.e.
odd) interaction region. The interaction at the central col-
lision point is now also avoided. The separations are gen-
erally larger and the tune shifts smaller than for the experi-
mental (even) regions. We therefore expect more problems
from the parasitic encounters in the even than in the odd
points.

Interaction schedule For four equal bunches and a
high degree of symmetry of the optical layout of LEP, all
bunches experience practically the same beam-beam ef-
fects. For not equally spaced bunches or finite bunch trains
the interaction schedule can become rather complex. The
extreme case of LHC with closely spaced bunches and gaps
of different sizes leads to so-called PACMAN bunches [16]
with a very complicated interaction schedule. The scheme
with bunch trains in LEP shows a similar behaviour, al-
though with fewer bunches. While the first bunch of a train
has a head-on collision followed by the three parasitic en-
counters shown in Fig.16, the second bunch will first expe-
rience a parasitic encounter on the incoming side, followed
by the head-on collision and two parasitic encounters on
the outgoing side of the interaction point. Similar consid-
erations can easily be made for all bunches of a train. As a
consequence of this schedule every bunch of a train has a
different sequence of beam-beam interactions and therefore
experiences different effects. Some bunches may have very
unfavourable encounters, e.g. those with small separation,
and are likely to be most sensitive to unstable behaviour.
One can therefore identify at least four different classes of
bunches according to their beam-beam interactions, show-
ing a ”PACMAN-like” effect within the beams. In addition
to the differences within a train, a residual non-closure of
the separation bumps due to imperfections or energy mis-
match causes a global offset that needs correction at each
interaction point and can cause additional parameter splits
between the beams.

Offsets and orbit separation The beam-beam kicks
of the parasitic interactions distort the orbits of the indi-
vidual bunches and since the collision pattern is different
for different bunches, the orbits of all bunches are slightly
different. As a consequence, the orbits at the interaction
points are different and the bunches collide with a small
offset. In the design of the bunch train separation scheme
care was taken to make use of possible compensation ef-
fects to reduce these unwanted offsets [17, 18]. However,
small offset of the order of µm are unavoidable. Further-
more, the orbit at the parasitic encounters itself is changed
by the beam-beam kicks and a self-consistent calculation
is required to give the correct answer. A program TRAIN
was developped [19] to compute the individual orbits of all
bunches in a train and the relevant parameters, such as tune,
chromaticity, dispersion, offsets and crossing angles. The

Table 4: Orbit offsets and separation (at central collision
point) for 300 µA per bunch at 45.6 GeV

a b c d
e+ [µm] +5.75 +1.10 -1.65 -0.30
e− [µm] +0.30 +1.65 -1.10 -5.75
d [µm] +5.45 -0.55 -0.55 +5.75
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orbit offsets and resulting separation of a train with four
bunches is shown in Tab.4 for an experimental interaction
point. An antisymmetry between the forward and back-
ward beam can be observed as expected. The calculated
separation amounts to more than the vertical r.m.s. beam
size and it is clear that it is impossible to adjust the colli-
sion such that all bunches of a train collide head-on. The
above example was computed for 45.6 GeV and bunch in-
tensities of 500 µA, i.e. above what was actually achieved,
but demonstrates the importance of this effect. The Fig.16
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Figure 18: Result of separation scans for three bunches per
train

shows the result of a vertical separation scan with simul-
taneous measurements of the luminosity for three bunches
per train, the preferred operational scenario in 1995. The
maximum luminosity, i.e. full bunch overlap, is reached at
different vertical positions for the three bunches within a
train, in full agreement with the calculation.

For four bunches per train this information is not avail-
able since most of the time LEP was operated with three
bunches per train, i.e. 12 bunches total. This small offset
proved to be an important performance limitation and the
best tune shifts obtained were always smaller than in pre-
vious years, leading to a performance that was lower than
expected. Nevertheless, the optimization of the bunch over-
lap was essential for a good performance. It should be men-
tioned, that from symmetry considerations a running with
two bunches per train is most favourable since the symme-
try of the collision is fully restored and both bunches of the
train can be collided head-on, although possibly in different
vertical position.

In the LHC the calculation of self-consistent orbits
would be necessary for almost 3000 bunches and it is
not obvious whether this is feasible nor whether a self-
consistent solution exists.

Tune and chromaticity splits Once the self-consistent
orbits were calculated, this information was used to com-
pute the tune and chromaticity of the individual bunches in

a train. The result is summarized in Tab.5 where q indi-

Table 5: Fractional tunes and chromaticities are split in-
side a train for 300 µA per bunch at 45.6 GeV

a b c d
qx 0.3548 0.3612 0.3613 0.3547
qy 0.2127 0.2235 0.2234 0.2133
Qx’ 0.4526 0.5000 0.5025 0.4848
Qy’ 0.1872 -0.2218 -0.2259 0.0053

cates the fractional part of the tune and Q’ the chromatic-
ity. The example was computed for 300 µA per bunch and
45.6 GeV and four bunches per train. The maximum tune
difference was up to 0.010 and the chromaticity difference
0.41 units in the vertical plane. This is a significant limita-
tion to the operational parameter space for the optimization
of the performance.

When the machine was operated with four bunches per
train, some bunches always had a lower life time, usually
those who experienced a beam-beam interaction at small
separation. This was confirmed in dedicated tests.

6.5 Closed orbit effects in the LHC

The TRAIN program [19] originally developped for the
maximum 16 bunches of LEP was re-written to handle two
beams with almost 3000 bunches each. Furthermore it must
be able to handle different optics for the two beams. Details
about the algorithm and its performance can be found in
[8].

For the nominal bunch filling scheme the horizontal off-
set in interaction point 1 (IP1) is shown in Fig.19. The off-
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Figure 19: Closed orbit along bunch structure in the LHC.

set is shown in µm as a function of the bunch number, start-
ing the count with the bunch following the large gap. The
first bunch of beam one is assumed to collide with the first
bunch of beam two in IP1. For symmetry reasons they also
collide in IP5. In Fig.20 I show a zoom into the first part
of Fig.19. Clearly visible are the nominal bunches in the
middle of each batch (approximately 40). At both ends of
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Figure 20: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches.

a batch the orbit offsets change due to the decreasing num-
ber of long range dipole kicks. The spread of the offset is
in the order of 0.1 to 0.2 transverse beam sizes. Although
this small offset has practically no effect on the luminos-
ity, it needs to be studied whether quasi head-on collisions
with a crossing angle and a small offset lead to an emittance
growth or other unwanted side effects. In the Figs.21 and
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Figure 21: Closed orbit along bunch structure in the LHC.
No fourfold symmetry.

22 I show similar data for an alternative filling scheme [9]
which optimizes the number of bunches, however it does
not have a fourfold symmetry. The effect is immediately
visible: the offset is slightly increased but not dramatic,
however practically no nominal bunches can be identified.
This may lead to unwanted difficulties and uncertainties
for beam measurements. As a further complication, we
have to expect bunch to bunch intensity variations of 10 to
20%. In the TRAIN program this intensity variation can
be considered and the result of such a variation is shown in
Figs.23 and 24, again for the nominal filling scheme. The
additional offset variation is clearly visible [9], and close to
the acceptable level.
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Figure 22: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. No fourfold symmetry.

0 1000 2000 3000
slot number

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ho
riz

on
ta

l o
ffs

et
 [µ

m
]

Figure 23: Closed orbit along bunch structure in the LHC.
20% intensity variation between bunches.

7 COHERENT EFFECTS

7.1 Coherent effects in LEP

Coherent beam-beam modes were frequently observed
in LEP and due to the large beam-beam strength parameter
the separation between the main modes, i.e. the σ- and π-
mode is rather large allowing only a limited area in the tune
space. Some background problems experienced in 1998
were attributed to the excitation of the horizontal π-mode
near the half integer resonance. A clear demonstration of
the two principal modes is shown in Fig.25 [20]. The tune
spectra of two colliding bunches were recorded separately
and the sum of the spectra is plotted. From the top to the
bottom of the picture the phase of one spectrum is shifted
in steps of one degree from zero to 360 degrees and the sum
signal is shown. For zero and 360 degrees this corresponds
to an in-phase signal and the σ-mode is be observed. For
a phase difference of 180 degrees the out-of-phase signal
corresponds to the π-mode. Both modes are very clearly
visible, a clear demonstration that the modes observed at
the corresponding frequencies can be associated to an in-
phase and an out-of-phase motion of the two bunches.

A coherent quadrupole mode was observed once at LEP,
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Figure 24: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. 20% intensity variation between
bunches.

Figure 25: Demonstration of coherent beam-beam modes
in LEP

however was never reproduced afterwards.

7.2 Coherent effects in LHC

Possible excitation of coherent dipole modes in the LHC
were studied using new simulation techniques and details
can be found in [10, 11, 12].

8 CONCLUSION

Amongst the numerous information on beam-beam ef-
fects we have obtained at LEP, some are of importance
for the evaluation of LHC beam-beam effects although a
quantitative application is not possible. The orbit effects
caused by beam-beam kicks have been identified as a se-
vere problem. A self-consistent treatment was vital to un-
derstand the observations quantitatively and the PACMAN
like effects have limited the performance. The experience
has shown that parameter splits between the beams or the
bunches within a beam must be kept as small as possible

and self-compensation of these effects must be used wher-
ever possible in the design process.
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Abstract

KEKB has achieved the peak luminosity of 4.1×1033

cm−2sec−1 and the present capability for delivering inte-
grated luminosity is 224 pb−1/day. This paper describes
(1) the recent performance and the problems of KEKB and
(2) the comparison of beam-beam simulations with experi-
ments at KEKB.

1 INTRODUCTION

KEKB is a double ring electron-positroncollider to study
B-meson physics. One ring is an 8 GeV electron ring (HER)
and the other is a 3.5 GeV positron ring (LER). The HER
and LER rings cross at the interaction point (IP) with a±11
mrad crossing angle. To study B-meson physics, which
deals with very rare processes, KEKB has a high design
luminosity of 1×1034 cm−2sec−1 and high vertical beam-
beam parameters (ξy) of 0.05. The general outline and over-
all parameters of the KEKB accelerator are given in [1].

Recently, there has been excellent progress in commis-
sioning of the KEKB accelerator. Figure 1 shows the lu-
minosity history of KEKB from the beginning of the com-
missioning with the Belle detector. The peak luminosity of
4.1×1033 cm−2sec−1 was achieved and the present capa-
bility for delivering integrated luminosity is 224 pb −1/day,
4.7 fb−1/month. The total integrated luminosity of 30 fb−1

was accumulated[2]. Table 1 summarizes the present pa-
rameters which are related to the luminosity with the design
parameters.

2 RECENT IMPROVEMENT OF KEKB
PERFORMANCE

KEKB performance has been improved by several
means: (1) installation of solenoids to LER, (2) a shift of
the vertical tunes above a half integer for both rings , (3)
increasing the HER bunch current after the replacement of
HER movable masks to those of a new type of mask and
(4) a continuos tune monitor of pilot bunch.

∗ visiting from SLAC, U.S.A
† visiting from IHEP, China
‡ visting from BINP, Russia
§ visiting from CERN, Switzerland

LER HER unit
Horizontal emittance 18 24 nm
Beam current 885 748 mA

(2600) (1100)
No. of bunches/ring 1154 1154

(5120) (5120)
Bunch current 0.77 0.65 mA

(0.5) (0.2)
Bunch spacing 2.4 2.4 m

(0.6) (0.6)
Bunch trains 1 1
σ∗

x 103 123 µm

σ∗
y
1) 2.9 2.9 µm

εy /εx 4.2 3.2 %
βx/βy 0.59/0.0065 0.63/0.007 m

(0.33/0.01) (0.33/0.01)
ξx/ξy

2) 0.072/0.045 0.050/0.028
(0.039/0.052) (0.039/0.052)

νx/νy 45.51/44.57 44.519/42.517
(45.52/44.08) (44.52/42.08)

Beam lifetime 166@854 mA 210@675 mA min.
Bunch length 5.9@8.0 6.4@11 mm@MV
Luminosity (CsI) 4.1×1033 (1×1034) /cm2/sec
Luminosity records 224/1336/4703 /pb
per day/ 7 days / month

Table 1: The present machine parameters and performance
of the KEKB (June 13, 2001). The values in a parenthe-
sis are the design values. 1) Vertical beam sizes of the two
beams are assumed to be equal. 2) An effect of dynamic
beta and dynamic emittance is not considered.

2.1 Installation of solenoid to LER

A vertical beam blowup has been observed in LER since
early operation. The main characteristics of the blowup are
explained by single-beam head-tail instability caused by an
electron cloud. About 4600 solenoids were installed to LER
in order to suppress the electron cloud. Its total length is
about 1.23 km and about 40 % of the ring circumference
was covered by solenoid field. The calculated field strength
was 45 Gauss at the center of the solenoid when the maxi-
mum current of 5 A was applied. Figure 2 shows the lumi-
nosity as a function of the bunch current product with and
without solenoid field.

The averaged vertical beam size over all bunches are
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Figure 1: This figure shows the luminosity history from the beginning of the commissioning with Belle detector (July 16,
2001).

measured by a synchrotron radiation interferometer [3].
The beam size is transformed from the source point of the
synchrotron radiation to IP. The thresholdcurrent of blowup
was also increased when solenoids were excited[4]. The
problem is improved but not solved yet. The vertical beam
size is still large at the higher beam current than 700 mA
with 1154 bunch mode.

2.2 Tune Survey and Continuous Tune Monitor

We have moved to the vertical tune above the half integer
for both rings at February, 2001. The reason is as follows.
(1) The closed orbit at the tune above the half integer is not
so sensitive to the machine errors as that with a tune just
above the integer. (2) The strong-strong beam-beam simu-
lations have predicted a tune region above the half integer
would bring a better luminosity[5].

The machine stability was also improved by the contin-
uos tune monitor of pilot bunches. This monitor can mea-
sure the tune during both injection and physics time by us-
ing un-collided bunches.

2.3 HER current

The movable mask is a device that cuts off spent elec-
trons/positrons just near the beam orbit and reduces back-

ground of a detector. Sixteen movable masks were in-
stalled for each ring of KEKB. Heating problems of mov-
able masks have limited the stored beam currents for HER.
New movable masks have been designed employing RF
technologies for HOM damping[6].

After replacement of the HER movable masks to a new
type[7] at April, 2001, we could increase the beam currents
gradually.

3 PRESENT LUMINOSITY LIMITATION
AND PROBLEM AT KEKB

The luminosity of KEKB has been limited by the several
problems. (1) Installation of the solenoids to suppress the
electron cloud instability has improved the problem as de-
scribed before but not resolved it completely. (2) It turned
out that the LER single beam blowup is sensitive to the fill-
ing pattern. We have tried various filling patterns to in-
crease the number of bunches. But we could not get higher
luminosity than that with 4 rf bucket spacing. (3) The to-
tal beam current is limited by the heating of vacuum com-
ponents due to the synchrotron radiation or HOM. And the
bunch current is also limited by the heating of the HOM
damper of the superconducting cavity for HER. (4) beam
background for Belle detector.
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Figure 2: Specific luminosity per bunch as a function of the
bunch current product in the case of all solenoid OFF(�),
solenoid of 400 m OFF(�) and All solenoid ON(�)
.

Figure 3: The data for the 3 rf bucket (�,�) spacing pattern
show lower specific luminosity than that for the 4 rf bucket
(�) pattern.

3.1 ”Egure” problem

Sudden drops of the luminosity, so called ”Egure” at
KEKB, are frequently observed. Figure 4 shows a typical
”Egure” pattern. The ”Egure” accompanies the LER hori-
zontal beam size growth. (sometimes accompanies vertical
beam size growth.) When ”Egure” is occurred, we make the
horizontal beam separation (∼ 50 µm ) for short time and

then the luminosity is recovered.
F. Zimmermann have explained that ”egure” problem

comes from a significant tune dependence and the existence
of flip-flop solutions for head-on collisions by evaluating a
simplified linear model of beam-beam interaction[8].

Figure 4: This figure shows a typical ”Egure” pattern.

4 BEAM-BEAM SIMULATION

Newly, a strong-strong beam-beam simulation code was
developed by K. Ohmi[9] to study beam-beam effect. In
that simulation, both of the colliding beams are represented
by macro-particles. The electron-magnetic fields of each
relativistic beam are obtained by solving the Poisson equa-
tion for the charge distribution of the macro-particles. At
each turn, the electron-magnetic fields are calculated for
each beam, and then these beams are allowed to interact
with each other through the fields. A transformation of the
collided bunch across one revolution through the ring is cal-
culated by using a beam transfer matrix. The effects of ra-
diation damping are quantum excitation are included in this
code. The machine errors can be included.

We have carried out simulations for the KEKB param-
eters which were used in operation and compared these
results with experiments. A 64×128 mesh with horizon-
tal and vertical sizes of 20×0.4 µm mesh was used, re-
spectively. Both beams are represented by 100,000 macro-
particles, typically. The macro-particles are tracked for
45,000 turns. Due to the fast progress in computing power,
the strong-strong beam-beam simulation becomes feasible.
But it still requires a large amount of computer resources.

Figure 5 shows the longitudinal slice number depen-
dence of specific luminosity. Although the slice number
should be bigger than 20, but we usually used 5 longitudi-
nal slices due to the limited computing resources. Even if
longitudinal slice number is 5, the simulation results are in
reasonable agreement with measurements qualitatively in
many cases. For a simulation for one tune point, it takes
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about 5 days on the Unix workstation of AP3000 (Sun) and
about 4 hours on the supercomputer of SR8000F1(Hitachi),
which have 12 GFLOPS for each node under above condi-
tions.
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Figure 5: Longitudinal slice number dependence of specific
luminosity. They were tracked for 20,000 turns, respec-
tively. The yellow filled circle is(�) is the luminosity per
bunch, the red filled triangle (�) and the filled box (�) is
the vertical beam size of LER and HER, respectively.

4.1 Tune Survey

Since the luminosity at KEKB is sensitive to the tune,
the tune survey is a very important tuning issue. We have
shifted the vertical tunes above a half integer for both rings
as described before.

The beam-beam simulation without errors shows that
νx ∼45.51, νy ∼44.64 is the best point in that area(the
upper graph of Figure 6). We have tried to the LER
vertical tune of 44.64 several times. But the luminosity
with that tune is lower than that with the present working
point(νx ∼45.51, νy ∼44.57), which is found by a trial and
error method.

The simulation with the error of vertical crossing angle
explains the lower luminosity at the tune of νx ∼45.51,
νy ∼44.64 is caused by machine error(the bottom graph of
Figure 6).

4.2 Specific luminosity versus current product

Beam-beam effects cause an increase in vertical beam
size and subsequent decreases in specific luminosity. Fig-
ure 7 shows the simulation of the specific luminosity ver-
sus the beam current products. The measured bunch cur-
rent and bunch length are also used as input parameters for
simulations. The simulation is in good agreement with the
experiment.

4.3 Vertical emittance dependence of Luminos-
ity

As shown in the Figure 8, the beam-beam simulation
predicted that (1) the vertical emittance of HER can be op-
timized to get a higher luminosity and (2) the vertical emit-
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Figure 6: The result of LER tune survey by the strong-
strong beam-beam simulation without errors (Top graph)
and with the error of the vertical crossing angle of 0.1 mrad
(Bottom graph).
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the simulation result. The longitudinal slice number is 10
in this simulation.

tance dependence of the luminosity for KEKB is stronger
than that for the case of zero-crossing angle.

The vertical emittance feedback system is realized by so-
called ”iSize” feedback system at KEKB[10]. At one of the
strongest non-interleaved sextupole pairs in the arc section
of HER, an anti-symmetric bump is made by three dipole
correction magnets. This bump converts the horizontal dis-
persion to the vertical. It leaks out around the whole of the
ring. The created xy-coupling is closed in the bump. This
dispersion enlarges the vertical emittance. ” iSize” system
at KEKB works well.
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5 SUMMARY

The peak luminosity of 4.1×1033 cm−2sec−1 was
achieved at KEKB and the present capability for delivering
integrated luminosity is about 4.7 fb−1/month. Installation
of the solenoids to suppress the electron cloud instability
has improved the situation but not resolved the problem.
The machine stability has been improved by moving to the
tune above a half integer and the continuos tune monitor of
pilot bunches. The beam-beam simulation is in reasonable
agreement with measurement in many cases.

6 FUTURE PLAN

(1) Since KEKB has a crossing angle, a shorter bunch
length is favorable for a geometrical luminosity reduction.
But we are afraid that the shorter bunch for HER may cause
more heating of HOM dampers. Anyway, we will try to do
machine study to shorten the LER bunch length.

(2) As we mentioned above, installation of the solenoids
to suppress the electron cloud instability has improved the
problem but not resolved it. During this summer shutdown,
we will add more solenoid to LER.

(3) The injection rate for positron beams is 1.5 mA,
which is the design value. We will try to introduce the
two-bunch acceleration in order to minimize injection time.
This plan would almost double the injection rate, and the in-
jection time would be reduced by 1/2.
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Abstract 

DAΦNE, the Frascati LNF Φ-factory [1], is providing a 
higher peak and integrated luminosity for the KLOE 
experiment since July 2000 [2,3]. Such improvements, 
together with a background reduction in the KLOE 
detector, have been obtained after continuous machine 
studies. An increase of the single bunch luminosity has 
been achieved essentially by the reduction of the effects 
of the machine non-linearities. These studies are 
described, and the present beam-beam limitations are 
reported, with an analysis of the coupling between the 
machine non-linearities and the beam-beam interaction. 
The integrated luminosity did greatly benefit by the 
capability of topping up the beam currents while keeping 
the KLOE detector on, together with an increase of the 
stored currents. 

1 INTRODUCTION 
DAΦNE is a high luminosity and low energy electron-

positron collider, working at the center of mass energy of 
the Φ resonance (1.02 GeV) to produce a high rate of K 
mesons to study CP violation. Two 97 m long 
independent rings lay in the same horizontal plane, 
crossing at a small horizontal angle (25 mrad) in two 
interaction regions (IRs), where the two experiments 
KLOE and DEAR are placed. The first one consists of a 
large detector with a high solenoidal field integral of 
2.4 Tm, that gives a strong perturbation to the machine 
optics at its relatively low beam rigidity (Bρ=1.7Tm). 
KLOE aims at measuring the CP violating parameter 
Re(ε’/ε). The second experiment is small and non-
magnetic, it studies the properties of kaonic atoms and 
will eventually be replaced by the magnetic detector 
FINUDA, for the study of hypernuclear physics.  

In March 2001 a peak luminosity of 1030cm-2s-1 in single 
bunch mode has been reached, after dedicated machine 
nonlinearities studies, discussed in more details in 
sections 2 and 4.  

A peak luminosity of 3.3⋅1031cm-2s-1 has been achieved 
in the multibunch mode, with 47 bunches separated by 
one bucket and beam currents of ≈700 mA, as reported in 
section 3. The maximum daily integrated luminosity is 
1.7 pb-1, and the total integrated luminosity by KLOE is 
≈100 pb-1 (see figure 1). 

 

 
Figure 1: KLOE Integrated Luminosity. 

2 SINGLE BUNCH LUMINOSITY 
To increase the single bunch (SB) luminosity, in the 

past years many physics runs have been dedicated to 
working point tuning, coupling correction, measurement 
and reduction of the effects of nonlinearities [4].  

Table 1 shows the improvements in the SB luminosity 
in such period. The first entry in the table, a SB 
luminosity of about 0.2⋅1030 cm-2s-1 obtained with a bunch 
current of about 10 mA, has been measured after the 
optimisation of both the collision parameters and 
coupling.  

The working points are different for the two rings since 
May 2000: they are (5.15;5.21) for the positron ring and 
(5.12;5.17) for the electron one. A strong coupling 
reduction (κ≈0.3%) has enhanced the SB luminosity to 
≈0.5⋅1030 cm-2s-1 (with a bunch current of about 15 mA). 
In this configuration in November 2000 a luminosity of 
1.8⋅1031 cm-2s-1 with 45 bunches and ≈600 mA current has 
been achieved. 
 

Table 1. Single bunch maximum luminosity and 
corresponding beam-beam tune shift. 

time LSB 
(1030cm-2s-1) 

Iperbunch 
(mA) 

ξx 

Nov.‘99 0.2 10 0.01 
May‘00 0.5 15 0.015 

March‘01 1 20 0.02 
 

A non-linear term in the wiggler magnets has been 
demonstrated last November, so machine time has been 
dedicated to systematic studies of the effect of 
nonlinearities, as it is discussed in more details in 
section 4.  

1 D.Alesini, G.Benedetti, S.Bertolucci, C.Biscari, R.Boni, A.Clozza, G.
Delle Monache, S. Di Mitri, G. Di Pirro, A.Drago, A.Gallo, A.Ghigo,
S.Guiducci, F.Marcellini, G.Mazzitelli, C.Milardi, L.Pellegrino,
E.Perevedentsev (BINP), P. Raimondi(SLAC), M.A.Preger, R.Ricci,
C.Sanelli, F.Sgamma, F.Sannibale, M.Serio, A.Stecchi, A.Stella,
C.Vaccarezza, M.Vescovi, G. von Holtey(CERN), M.Zobov. 

A new optics, called ‘detuned’, with no low-β in the 
DEAR IR, has been applied to DAΦNE [5]. With this 
structure the machine is tuned to collide only at the 
KLOE IP. As a consequence, the lattice has lower 
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dynamic tracking system [9] and the relative luminosity 
performances have been compared to simulations. 

The non-linear variation of the beam-beam force with 
the distance from the beam center causes a tune shift 
dependent on the particle betatron oscillations amplitude 
and a tune spread in the beams and it induces non-linear 
resonances, usually studied by the Hamiltonian 
perturbation theory. When the two non-linear forces 
(cubic lattice non-linearity and beam-beam interaction) 
are considered together, the tune shift is given by the sum 
of the tune shift on amplitude due to the cubic non-
linearity ∆Qx=2c11Jx and the beam-beam tune shift. In 
fact, the single particle Hamiltonian taking into account 
the beam-beam interaction and the cubic non-linearities 
can be expressed in the following way: 
H=H0+(HCUB+VBB). H0 is the unperturbed Hamiltonian, 
which is proportional to the unperturbed  betatron tune 
Qx0 and to the action variable Jx (H0 ∝ Qx0 Jx,), in one 
degree of freedom. VBB is the beam-beam potential. The 
Hamiltonian cubic term HCUB can be expressed as c11Jx

2.  
The coefficient c11 characterizing the cubic non-

linearity strength, is measured by the dynamic tracking 
system. A single bunch is excited horizontally by pulsing 
one of the injection kickers. The dynamic tracking system 
allows to store and to analyse the position of the kicked 
bunch turn-by-turn. The coherent betatron oscillation 
amplitude is recorded over more than 2000 turns, 
providing informations on betatron tune shifts with 
amplitude. c11 is derived from the analysis of the coherent 
oscillation amplitude decay due to nonlinear 
filamentation. The decoherence signal envelope at small 
currents decays with time t in the following way [10]: 
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The cubic nonlinearity can be determined from τ if the 
kick amplitude ∆x and the horizontal beam size σx are 
known at the pick-up position. E/x ∂ω∂ and is the 
chromaticity, σE is the energy spread and Ωs the 
synchrotron frequency. The coefficient c11 is related to the 
cubic nonlinearity  by the following relation: 

, where β

2
xx A/ ∂ω∂

)/ 0x ωβ)(A/(c 2
xx11 ∂ω∂= x is the horizontal 

beta function at the pick-up position and ω0 is the angular 
revolution frequency and it is found directly from the 
signal envelope by fitting it by the exponential function. 
Practically: c11=(βx/2εx)1/2/(2πNt∆x), where Nt is the 
number of turns after which the amplitude of the coherent 
signal drops by 1/e and εx is the horizontal emittance. 

During collider tune up for collisions it has been found 
that the cubic nonlinearity can change widely depending 
on lattice functions and orbit. In fact values of c11 have 
been measured between –6⋅102 and +4⋅102, as reported in 

Table 3. It is worth remarking that the sign of the non-
linearity changes when the wigglers are switched off. 

A different behaviour of signal decoherence is expected 
when c11 is positive or negative. In fact, for c11<0 the 
resonance width can be small and there is decoherence, 
but on the other hand the beam-beam footprint enlarges, 
so that the beam tails cross more resonances. For c11>0 
the resonance width can be very large and no decoherence 
is predicted, but in this case the cubic non-linearities tend 
to compensate the beam-beam footprint.  

So, it is not obvious to say whether it is preferable to 
have c11 positive or negative. It has been found 
experimentally in DAΦNE that the best situation from the 
beam-beam point of view was with c11 negative and in 
absolute value less than about |2⋅102|, as the highest value 
of SB luminosity (1030cm-2s-1) has been measured when 
c11 was about –1.7⋅102. 

From the analysis on the measurements reported in 
Table 3 we conclude that the highest negative contribution 
to c11 comes from the wigglers and its effect depends 
strongly on the β-value where the non-linearity is 
positioned; the sextupoles give a negative contribution to 
c11, but less than the wigglers. 

The combined effect of the cubic non-linearities and the 
beam-beam interaction depends on betatron tunes, on 
beam-beam tune shifts, on the non-linearity strength and 
on the sign of c11. 

 The new ‘detuned’ optics presently used reduces the 
effect of non-linearities in wigglers by a smaller value of 
the βx-function at their location. The reduction of the 
wiggler octupole contribution helps to increase the single 
bunch luminosity, but at the same time the Landau 
damping needed to suppress transverse multibunch 
instabilities is reduced.  

In order to correct and optimise the effect of the 
octupole term on beam-beam and instabilities the 
installation of octupole magnets in foreseen in Fall 2001. 

 
Table 3. Measured non-linear coefficient for different 

lattice configurations. 
Optics c11⋅102[m-1] 

last year KLOE runs -6 
Wigglers off and sextupoles off +4 

Wigglers off +2 
Wiggler’s B field reduced by 15% -3 

‘detuned’ -3 

5 BEAM-BEAM SIMULATIONS 

 5.1 Effect of cubic nonlinearities on Single 
Bunch Luminosity 

The weak-strong code LIFETRAC [11] has been used 
to perform beam-beam simulations including the cubic 
non-linearity implicitly through the coefficient c11. In this 
way it is possible to investigate the dependence of beam-
beam tails, beam blow-up and lifetime on the cubic non-
linearity. Simulations have been done on the present 
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positron working point (5.15;5.21) assuming equal tune 
shift parameter for the two transverse planes ξx=ξy=0.03 
and c11 has been varied from –6⋅102 to +6⋅102 
corresponding to the measured values. Dynamic aperture 
is assumed rectangular with boundaries at 10 σx and 
70 σy. 

 

 
              (a)                           (b)                         (c) 

Figure 4. Equilibrium distributions for different cubic 
nonlinearities in space of normalised betatron amplitudes: 

(a):c11=-4⋅102;  (b):c11=0;  (c):c11=+4⋅102. 
 
Table 4 summarises the simulations performed for 

different c11 values, where the horizontal and vertical 
blow-up and the expected beam-beam lifetimes are 
reported. The beam distributions in the space of 
normalised betatron amplitudes shown in Figure 4 
evidence that both positive and negative nonlinearities are 
harmful for the beam-beam effects. Above |c11|>2⋅102 the 
distribution tails start growing and the bunch core blows 
up in both cases. According to simulations, the 
nonlinearity strength can be considered acceptable when 
c11 is within −2⋅102 and +2⋅102, as inside this range the 
beam tails are inside the dynamic aperture and no blow up 
is expected.  This expectation agrees with our 
observations, where the highest single bunch luminosity 
of 1030 cm-2s-1 has been reached with c11=−1.7⋅102, while 
a low single bunch luminosity of  about 6⋅1030 cm-2s-1 was 
obtained when c11 was −6⋅102, for which blow up and 
short lifetime are predicted. 

 
Table 4. Simulated beam-beam blow up and lifetime 

versus cubic non-linearity strength. 
c11⋅102[m-1] σx/σx0 σy/σy0 τbeam-beam 

- 6 1.06 2.43 2.4 h 
- 4 1.05 1.30 9.9 h 
- 2 1.07 1.04  
0 1.07 1.05  

+ 2 1.11 1.05  
+ 4 1.16 1.04 7.7 h 
+ 6 1.40 1.11 4 min 

 
In the present electron ring structure c11 is about −3⋅102 

while in the positron one is about −3.5⋅102, so it is higher 
than the above discussed ‘limit’ at |2⋅102| in both cases. 
This is due to the increase of the β-function in the 
wigglers, in order to handle background. In fact, it has 

been found both experimentally and from simulations that 
Touschek particles could be stopped inside the wigglers 
by enhancing the βx-value at their location. These 
particles would otherwise be lost inside the experiments. 
Values of c11 around –3⋅102 seem to balance well 
background problems with nonlinearities. In fact with the 
present configuration a single bunch luminosity of about 
8-9⋅1029 cm-2s-1 has been measured by KLOE.  

5.2 Effects of parasitic crossings and cubic 
nonlinearities 

A reduction of the average single bunch luminosity by 
about 15% has been observed experimentally when going 
from single bunch to multibunch operation, as the 
luminosity does not scale linearly with the number of 
bunches. In fact, the peak luminosity is 3.3⋅1031 cm-2s-1 
with 47/60 bunches, giving an average single bunch 
luminosity of 7⋅1029cm-2s-1 with ≈18 mA per bunch 
current. One of the reasons is that the maximum beam 
currents cannot be stored simultaneously, since both rings 
are filled by the same injector chain. Few minutes are 
necessary to convert the injector between the two beams 
and the lifetimes are of the order of 2000 s. We have not 
observed yet a limit in the maximum of the luminosity as 
a function of the beam currents. Presently, the maximum 
electron beam current suitable for luminosity delivery is 
limited to ≈850 mA by ion trapping and longitudinal 
instabilities. The positron maximum beam current is 
limited to ≈800 mA by the KLOE background. Above 
such current we also observe a rapid decrease of the 
electron lifetime, due to strong beam-beam effects. The 
optimum number of bunches is found during operation. 

 

 
              (a)                           (b)                         (c) 
Figure 5. Equilibrium distributions in space of normalised 
betatron amplitudes: (a): no nonlinearity, no parasitic 
crossings included; (b): no nonlinearity and two parasitic 
crossings at 10 σx; (c): cubic nonlinearity with c11=-350 
and two parasitic crossings. 

 
One source of luminosity limitation in multibunch 

operation can derive from parasitic crossings (PC) 
enhanced by the cubic nonlinearity. In fact, a linear 
scaling with the number of bunches has been observed 
when they were separated by three empty buckets instead 
than only by one. Possible cures to parasitic crossings are 
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the decrease of βx at the PC position, the decrease of 
emittance or an increase of the crossing angle. 

Beam-beam interaction with two parasitic crossings at 
each side of the IP in the presence of cubic nonlinearity 
have been simulated by LIFETRAC. The PCs have been 
placed at 81 cm from the IP (about10 σx), which 
corresponds to the presently used fill pattern with one 
empty bucket between bunches. For these simulations the 
bunch current was 25 mA, c11 has been set to –3.5⋅102, 
coupling has been set to the present value 0.3% and the 
horizontal and vertical emittance at 10-6 m and 0.3⋅10-8 m 
respectively. 

As it is shown in Figure 5 the PCs enhanced by the 
nonlinearity strongly affect the bunch tails reducing the 
beam lifetime. 

6 CONCLUSIONS 
Peak luminosities of 1030 cm-2s-1 and of 3.3⋅1031 cm-2s-1 

have been reached in single and multi-bunch mode 
respectively. Measurements and simulations have been 
performed in order to understand and control 
nonlinearities. The DAΦNE optics has been modified to 
reduce their impact on the luminosity performaces. 

The numerical simulations of beam-beam effects taking 
into account the measured cubic nonlinearities have 
shown that they have a strong effect on the collider 
luminosity performance, in agreement with experimental 
observations.  

Experimentally it has been found that the negative sign 
for c11 is preferable, as in this case decoherence seems to 
play a stabilizing role for the beams. In agreement with 
simulations it has also been found experimentally that the 
nonlinearity strengths are acceptable for values below 
≈|2⋅102|. 

The optimisation of the beam-beam performance with 
nonlinearities will be carried out when tunable octupoles 
will be installed on the two main rings next fall. Long 
term plans foresee major hardware modifications: wiggler 
nonlinearities are planned to be corrected by means of 
pole shimming. 
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Abstract
CESR-c is a possible modification of CESR to operate

in a beam energy range of 1.5 to 2.5 GeV for charm,
QCD, and tau physics. Control of the horizontal
emittance, energy spread, and synchrotron radiation
damping at these low energies requires the installation of
new wiggler magnets. We present the results of beam-
beam simulations for CESR-c using the ODYSSEUS
strong-strong simulation code.  Evidence of a coherent
beam-beam effect is seen.

1 CESR-c: AN e+e – FACTORY FOR
CHARM AND QCD PHYSICS

CESR-c is a proposed e+e– factory for charm and QCD
physics based on CESR [1]. To be able to run at energies
as low as 1.55 GeV and as high as the 5.3 GeV energy
used by CESR for Υ(4s) physics and synchrotron
radiation, significant modifications of CESR are needed.
These are:

• Replacement of the present permanent magnet IR
quads with superconducting quads (including a short,
vertically focusing permanent magnet nosepiece) to
expand the operating energy range and lower β*

y at the
interaction point.

• An upgrade of the rf cavity complement to shorten
the bunch length so that it is compatible with lower
β*

y.
• Installation of ~18 m of 2.1 Tesla wiggler magnets to

control emittance and damping.

The control of horizontal emittance through the use of
wiggler magnets is necessary to maintain a high bunch
current without exceeding the maximum beam-beam
parameter that the beams can tolerate. The luminosity,
written in terms of horizontal emittance εx and limiting
beam-beam parameters ξx and ξy, is:

L r
f

r
c x x y

y

= +( )1 2
2

0
2

π γ ε ξ ξ
β*

where r y x= <<σ σ* * 1, fc is the collision frequency, and

r0 is the classical electron radius. E is fixed by the high-
energy physics requirements, and ξy and ξx are limited by
beam dynamics in a way that’s not fully understood. One
wants to increase the number of bunches and decrease βy

*

as much as possible given the accelerator lattice and
interaction region optics.  The remaining parameter that
can be changed is the horizontal emittance εx, which
should be increased as much as possible within the

constraints imposed by the physical and dynamic
apertures.

The goals for manipulating synchrotron radiation effects
are:
• to increase the horizontal emittance εx;
• to keep the energy spread ∆E/E0 within tolerable

limits; and
• to minimize the transverse damping time τy,x to

facilitate multi-turn injection.
Minimization of the transverse damping time may also

be beneficial for ξy. A survey of past experience in many
e+e– colliders suggests that a larger damping decrement is
associated with a larger maximum beam-beam parameter.
We used a particle-tracking simulation, described in the
next section, to estimate the effect of damping decrement
on ξy.

Some parameters of CESR-c are listed in Table 1.

Table 1: CESR-c and CESR parameters.

E0 [GeV] 1.55 1.88 2.5 5.3

L [1033 cm–2s–1 ] 0.150 0.300 0.500 1.250

ibunch [mA/bunch] 2.8 4.0 5.1 8.2

Ibeam [mA/beam] 130 180 230 360

ξy 0.035 0.04 0.04 0.06

ξx 0.028 0.036 0.034 .028

∆E/E0 [10–3 ] 0.75 0.81 0.79 0.67

τy,x [ms] 69 55 52 22

Bwiggler[Tesla] 2.1 2.1 1.75 0

β*
y [cm] 1.0 1.0 1.0 1.8

εx [nm-rad] 230 220 215 205

2 BEAM-BEAM SIMULATION

2.1 Simulation Code: ODYSSEUS
ODYSSEUS [2,3] is a strong-strong beam-beam

particle-in-cell code which includes longitudinal dynamics;
and broadband and narrowband resonator wake fields.

Its speed has been optimized by:
• using different approximations for the electromagnetic

field calculations in different parts of the beam (core
vs. tails);

• using an adaptive mesh; and
• using FFT methods for the electromagnetic field

calculation.
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2.2 Benchmarking the Code with CESR at 5.3
GeV

Under simulation conditions that included only a
perfectly linear lattice and no vertical radiation excitation,
ODYSSEUS was used to simulate CESR at 5.3 GeV
with its known operating parameters.  Because there was
no source of natural vertical emittance, the beam was
allowed to find its own equilibrium vertical size due to the
beam-beam effect.

The results of a 7×7 tune scan are shown in Figure 1.
The best operating point found in the simulation tune
scan is nearly identical to the one used in CESR
operation, and the maximum luminosity in the simulation
(1.33×1033 cm–2 s–1) is nearly the same as the observed
maximum luminosity (1.3×1033 cm–2 s–1).

10.511 10.535

9.552

9.576

Qx

Qy

0.0

1.5 1033
uminosity, cm 2s

Figure 1.  Simulation results: luminosity vs. tune in
CESR at 5.3 GeV.

2.3 Simulation of CESR at 1.55, 1.89, and 2.5
GeV

The same code was used to simulate the equilibrium
luminosity of CESR-c for the parameters of Table 1, at
energies of 1.55, 1.89, and 2.5 GeV.  The results of the
tune scans are shown in Figures 2, 3, and 4.

10.511 10.547

9.552

9.576

Qx

Qy

0.0

1.5 1032
uminosity, cm 2s

Figure 2.  Simulation results: luminosity vs. tune in
CESR-c at 1.55 GeV.
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Figure 3.  Simulation results: luminosity vs. tune in
CESR-c at 1.89 GeV.
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Figure 4.  Simulation results: luminosity vs. tune in
CESR-c at 2.50 GeV.

The regions of good luminosity in the tune plane are
significantly different for these parameters than for the 5.3
GeV parameters.  This is probably due to the difference in
synchrotron tune, which is approximately twice as large
for the low energy parameter sets as for the 5.3 GeV set.
The dark horizontal band at the bottom of Figures 2, 3,
and 4 appears to be due to a synchrobetatron resonance.

Table 2 summarizes the luminosity at best operating
point for the four different energies.  The luminosity
indicated by the simulation is, in each case, similar to the
luminosity goal in the parameter list of Table 1.  The
maximum achievable ξy appears to be very sensitive to
the synchrotron tune (compare, for example, ξy for 1.89
GeV with that for 2.5 and 1.55 GeV). Further simulation
is needed to determine the optimum value of all three
tunes.

Table 2: Summary of simulation luminosity results.

E (GeV) Qs Ibunch (mA) L (cm–2 s–1) ξy

5.30 0.056 7.68 1.33×1033 0.060

2.50 0.104 5.10 4.45×1032 0.036

1.89 0.110 4.06 4.13×1032 0.055

1.55 0.105 2.82 1.46×1032 0.034

2.4 Effect of Damping Time
To investigate the effect of the transverse damping time

on the maximum achievable beam-beam parameter ξy, we
simulated the case of CESR-c at 1.89 GeV with a single
1.3 m wiggler rather than an 18 m set of wigglers.  The
simulation parameters are listed in Table 3, and the
luminosity vs. tune plot for the long (320 ms) damping
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time is shown in Fig. 5.
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Figure 5.  Simulation results: luminosity vs. tune in
CESR-c at 1.89 GeV with a 320 ms transverse damping

time.

Table 3: Simulation results: variation of damping time.

E
(GeV)

τx,y

(ms)
Qs Ibunch

(mA)
L
(cm–2 s–1)

ξy

1.89 55 0.110 4.06 4.13×1033 0.055
1.89 320 0.075 4.06 2.23×1032 0.030

The tune plane plots of Fig. 3 and Fig. 5 cannot be
compared directly, because the synchrotron tunes are
different.  However, the maximum luminosity shows only
a mild dependence on damping time. If the luminosity L
has a power-law dependence on damping time τ , then the
simulation indicates L ∝ −τ 0 35. .

3 IS THE BEAM-BEAM LIMIT A
COHERENT OR INCOHERENT

PHENOMENON?
In flat-beam e+e– colliders, the beam-beam parameter ξy

tends to increase linearly with current until it reaches
some limiting value, and then remains constant at higher
current.  Two alternative explanations are possible for this
beam-beam limit.  The first is that resonances caused by
the nonuniformity of the beam-beam focusing produce an
increase of the vertical amplitude of individual particles.
The second explanation is that the beam-beam interaction
couples the collective motion of both beams, and that
some coupled modes of oscillation are unstable.  It is not
known whether the observed beam-beam limit is due
primarily to single-particle (incoherent) or collective
(coherent) instability.  There is evidence from DCI [4] that
the limiting ξy with charge neutralization is similar to
that in other colliders. That observation favors coherent
instability as the dominant mechanism for the beam-beam
limit.  We have examined the simulation results for
CESR for evidence of a coherent instability.

3.1 Flip-flop in the simulation results
Perhaps the most familiar type of coherent instability

in circular colliders is the “flip-flop” effect, in which the
equilibrium beam size of one beam shrinks while that of
the other beam grows. Some of the regions of poor

luminosity in Fig. 1 are due to flip-flop.  The ratio of the
vertical beam size of the small beam to that of the large
beam, for the simulation results of Fig. 1, is plotted in
Fig. 6.  Areas of severe flip-flop are adjacent to areas with
good luminosity.

10.511 10.535

9.552

9.576

Qx

Qy

0.3

1.0
small large

Figure 6.  Simulation results: vertical beam size ratio
σy,small/ σy,large vs. tune in CESR at 5.3 GeV.

3.2 Fluctuations in the simulation results
Figure 7 shows the vertical centroid of both beams vs.

turn number for the simulation corresponding to CESR
5.3 GeV operating conditions. Because of the limited
number of macroparticles (Np = 5000) used in the
simulation, there must be a random root-mean-square
fluctuation of the centroid y Nrms y p= σ . The actual

fluctuation of the centroid in the simulation is 4.4 times
larger, indicating a departure from random motion. The
two beams are oscillating in phase (i.e., in the σ-mode)
with an oscillation amplitude much less than the vertical
beam size. The power spectrum of the vertical centroid
motion of one of the beams (Figure 8) shows a spike at
the bare tune frequency, as expected for σ-mode
oscillations.

10 20 30 40 50
turn number

-7.5· 10-7

-5 · 10-7

-2.5· 10-7

2.5· 10-7

5 · 10-7

7.5· 10-7

yHm L verticalcentroidvs.turn number

random
rms
beam2
beam 1

Figure 7.  Simulation results: vertical centroid vs. turn
number.
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Figure 8.  Simulation results: power spectrum of the
vertical centroid motion.

3.3 Correlations in the Simulation Results
Figure 9 shows the amplitude of the vertical centroid

motion of beam 1 and beam 2 for 60,000 turns,
corresponding to 7 transverse radiation damping times.
Initial random correlations must disappear after several
damping times, so this strong correlation indicates that
the oscillations are coherent.

Figure 10 shows the rate of change of the phase,
(dφ/dn)/2π, of the vertical oscillation of each beam. This
quantity can be thought of as the instantaneous coherent
tune of the oscillation. A Gaussian smoothing function of
width σn = 200 turns has been applied to this time series.
The instantaneous tune is also very strongly correlated
between beams and shows correlated brief jumps from one
tune to another.

Plots of the instantaneous vertical tune vs. horizontal
tune are shown in Figures 11 and 12. Figure 11 plots the
same simulation results as Figs. 9 and 10, i.e., CESR
operating conditions. Excursions in the vertical and
horizontal tune are visible, but are not obviously
correlated with each other. Figure 12 shows the
simulation output for a value of the tunes where the
luminosity is low, but there is no flip-flop. The
horizontal band at 0.57 < Qy < 0.58 is due to strong
vertical head-tail motion.

When plots of the tune space trajectories for a variety of
bare machine tunes are superimposed, structure becomes
evident. Fig. 13 shows the tune space trajectories (plotted
as points) of the motion of the centroid of the beam for
7×7 values of the bare tunes. The lines on the plot
correspond to resonance conditions: the vertical,
horizontal, and diagonal lines represent 2 2Q Q nx s− = ,

4 6Q Q ny s− = ′ , and 4 6Q Q Q nx y s− + = ′′ , respectively.

A horizontal band at Qy ≈ 0.574 does not meet such a
resonance condition. This line is due to vertical head-tail
motion. The power spectrum of 〈yz〉 for (Qx, Qy) =
(0.519, 0.568) shown in Fig. 14 indicates a large head-tail
amplitude.
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Figure 9.  Simulation results: amplitude of the vertical
centroid motion vs. turn number for (a) beam 1 and (b)

beam 2.
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Figure 10.  Simulation results: (dφ/dn)/2π (instantaneous
tune) of the vertical centroid motion vs. turn number for

(a) beam 1 and (b) beam 2.
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Figure 11.  Simulation results: Tune space trajectory of
the motion of the centroid of the beam for bare tunes

(Qx, Qy) = (0.519, 0.568).
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Figure 12.  Simulation results: Tune space trajectory of
the motion of the centroid of the beam for bare tunes
(Qx, Qy) = (0.535, 0.552).
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Figure 13.  Simulation results: Superimposed tune space
trajectories (plotted as points) of the motion of the

centroid of the beam for 7×7 values of the bare tunes.
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Figure 14. Simulation results: power spectrum of 〈yz〉 for
(Qx, Qy) = (0.519, 0.568).

The observation that the simulated beam has low
amplitude coherent oscillations leads us to a conjecture
about the nature of the beam-beam limit for favorable
tunes: the beams are neither stable (i.e., subject only to
single-particle dynamics), nor unstable (e.g., undergoing
oscillations comparable to the beam size), but instead are
at the threshold of stability.  That is, the beams seek a
size where they are just on the edge of stability.  Smaller
beams would be unstable with a significant growth rate,
and would grow. Larger beams are stable and would shrink
due to radiation damping.
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4 OBSERVATIONS IN CESR AT 5.3
GEV

4.1 Beam-Beam Performance
The luminosity achieved by CESR at 5.3 GeV was the

result of a long-term program to improve beam-beam
performance. Since both beams share the same vacuum
chamber, they are separated electrostatically and cross at
the interaction point with a ±2.3 mrad angle.  The history
of the vertical beam-beam parameter in CESR can be
summarized as:
• Head-on collisions, 2 interaction points: ξy ≈ 0.02
• Head-on collisions, 1 interaction point: ξy ≈ 0.04
• First 7-bunch crossing angle collisions: ξy ≈ 0.03
• First 9-bunch crossing angle collisions: ξy ≈ 0.023
• 45-bunch crossing angle collisions: ξy ≈ 0.07

In going from two interaction points to one, the beam-
beam parameter (per interaction point) doubled. In going
to 7-bunch collisions and then to 9-bunch collisions with
a crossing angle, the effect of the large orbit displacement
in and near the interaction region severely limited the
beam-beam parameter. At the end of its 5.3 GeV
operation, CESR operated with 9 trains of 5 bunches,
each with a ξy that was three times as large as it was in
the first 9-bunch collisions, even though the number of
parasitic beam-beam interactions had increased. The
improvement in ξy was due to:
• elimination of multipoles in the wigglers used for

producing synchrotron radiation;
• improvement in operating point;
• reduction of the higher multipole fields of the

sextupole magnets by altering the pole tips;
• improvement in the measurement and correction of

betatron phase, local coupling, dispersion, and
interaction point parameters (e.g., α* and β*);

• improvement in the distribution of sextupole magnet
strengths;

• survey and alignment of quadrupole and dipole magnet
rolls;

• rewiring of dipole magnet backleg windings to
eliminate a skew sextupole moment.

Careful attention to the closed orbit, coupling, β
function errors, operating point, interaction point errors
and multipole errors resulted in a large increase in the
beam-beam performance. CESR shows the typical
behavior of a ξy that increases with current up to a
maximum value, after which it no longer increases (see
Figure 15 below) [5]. The fact that the beam-beam
simulation code predicts the observed ξy in CESR may
indicate that, at 5.3 GeV, CESR reached its limiting ξy

for its choice of operating parameters.

Figure 15. Luminosity and vertical beam-beam parameter
ξy for high-energy physics operation at 5.3 GeV in

CESR.

4.2 Long-Range Beam-Beam Interaction
In CESR, the beams share a single vacuum chamber,

and are separated electrostatically to produce a “pretzel”.
The long-range beam-beam interaction (LRBBI) causes
closed orbit errors and tune shifts. The closed orbit and
tune are different for different bunches, because the
bunches are not uniformly spaced

The beams are vertically displaced in interaction region
due to the helical orbit produced by the detector solenoid,
so the LRBBI produces kicks with a vertical component.
A significant differential vertical displacement of the
bunches at interaction point results. The orbit and tune
error is mostly due to parasitic collision points within
interaction region. The calculated displacements and tune
shifts [5] are shown in Figure 16.

The differential vertical beam displacements for each
bunch, averaged over trains, have been measured in
CESR.  Figure 17 shows these displacements vs. time
during a single run. Compensation of the differential
vertical displacements has been attempted using a
transverse feedback kicker as a feed-forward device, with
partial success [6].
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Figure 16. Calculated vertical beam displacement (at the
interaction point) and tune shift due to LRBBI in CESR at

5.3 GeV.
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Figure 17. Measured vertical differential beam
displacement vs. time in CESR at 5.3 GeV. The five sets
of symbols represent the average over 9 trains of each car

in the train.

4.3 Round-Beam Experiments
Electron storage rings tend to have flat beams, in which

the horizontal emittance is much larger than the vertical
emittance, because of synchrotron radiation excitation of
the horizontal motion.  By coupling the horizontal and
vertical motion of the beam particles and making the
horizontal and vertical beta functions equal at the
interaction point, the beams may be made round in

collision.  The luminosity of a collider with equal
parameters for both (short) Gaussian beams is:

L r
E Iy

y

cm s
GeV A

cm
− −[ ] = × +( ) [ ] [ ]

[ ]
2 1 342 17 10 1. *

ξ
β

where r y x= σ σ , ξy is the vertical beam-beam

parameter, E is the beam energy, I is the current per beam,
and βy

*  is the vertical beta function at the interaction

point.  For flat beams (1+r) ≈ 1, but for round beams
(1+r) = 2.  From this geometric factor alone, one can gain
a factor of 2 in luminosity with all other parameters being
held the same.  One might also expect that the limiting
value of the beam-beam parameter would be higher for
round beams than for flat beams, since round beams
possess a greater degree of symmetry than flat beams and
are immune to some of the resonances that affect flat
beams.

Past experiments with resonantly coupled round beams
in CESR [7, 8] demonstrated a beam-beam parameter ξ =
0.09, larger than the best beam-beam parameter (ξy =
0.07) achieved with flat beams.  The parameter set for one
of these experiments is shown in Table 4.  The single-
bunch luminosity was small, because β* was limited by
the interaction region optics. The value of the beam-beam
parameter was determined from the measured collision rate
and from the beam-beam tune split, shown in Figure 18.

Table 4: Past round beam experiment parameters

parameter value

energy E 5.30 GeV

horizontal β function at
IP

β*
x 300 mm

vertical β function at IP β*
y 300 mm

horizontal tune Qx 10.77

vertical tune Qy 9.77

h emittance (uncoupled) εx,unc. 124 nm

emittance (coupled) εx, εy 62 nm

beam-beam parameter ξx, ξy 0.09,  0.09

bunch current Ib 22 mA

single-bunch luminosity L 1.0×1031 cm–2s–1

Another approach to round beams is the Möbius lattice
of Talman [9]. The Möbius lattice uses a set of skew
quadrupoles to exchange vertical and horizontal degrees of
freedom at one point in the ring. Horizontal oscillations
become vertical at this point and horizontal again after a
second turn. In this way the vertical and horizontal
emittances become exactly equal. The Möbius ring has the
unusual property of possessing a single transverse tune.

A skew quadrupole Möbius section was set up opposite
the interaction point in CESR. The single tune was
demonstrated and portions of tune plane mapped, but
problems from the sextupole distribution, injection, and
aperture prevented achieving significant luminosity.
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Figure 18. Spectrum analyzer plot of the tunes of
resonantly coupled round beams in CESR.  The two

σ-modes are at the left and the two π-modes are on the
right.

5 PLANS FOR FUTURE WORK

5.1 Simulation
We plan to incorporate the nonlinear lattice and the

long-range beam-beam interaction into ODYSSEUS via
calls to BMAD [10], a particle-tracking code. We plan to
determine as cleanly as possible the effect of synchrotron
radiation damping rate on ξy by running simulations
where the tunes and beam geometry parameters are held
fixed while the damping times are changed. We also plan
to simulate the effect of unequal electron and positron
tunes on ξy.

5.2 Experiments
The superconducting/permanent magnet interacting

region magnets recently installed in CESR will make it
possible to conduct round-beam experiments with
β βx y

* *= =  30 mm, an order of magnitude smaller than in

the past CESR experiments.  The experiment parameters
are listed in Table 5:

Table 5: Future round beam experiment parameters.

parameter value

energy E 1.88 GeV

solenoid field B 1.0 T

horiz. β function at IP β*
x 30 mm

vertical β function at IP β*
y 30 mm

horizontal tune Qx 8.75

vertical tune Qy 9.75

h emittance (uncoupled) εx,unc. 52.8 nm

emittance (coupled) εx, εy 26.4 nm

beam-beam parameter ξx, ξy 0.10,  0.10

bunch current Ib 2.76 mA

single-bunch luminosity L 0.76×1031 cm–2s–1

Superconducting quadrupoles Q1 and Q2 will have their
polarities reversed so that they become horizontally
focusing and vertically focusing, respectively.  Together
with the vertically focusing permanent magnet quadrupole,
they comprise a triplet, with a small β* in both transverse
planes. The optics in the arcs of the machine together
with the existing electrostatic separators can support a
seven-bunch pretzel with zero crossing angle at the
interaction point.  The aperture will accommodate
particles out to 12 σx,y when the emittances are four times
the nominal coupled emittance of 26.4 nm, and the long-
range beam-beam interaction will allow bunch currents up
to four times the nominal bunch current of 2.76 mA.

A second set of experiments will use the CESR-c
damping wigglers to increase the emittance, and thus the
bunch current, by a factor of four, maintaining the same
beam-beam parameter.  With seven bunches in CESR-c, a
luminosity of 2.1×1032 cm–2s–1 is expected.  This
luminosity is nearly that which we expect with flat beams
(L = 3.0×1032 cm–2s–1), but the specific luminosity L/Itot

would be a factor 1.6 higher than with flat beams.
Perhaps more importantly, the round beam optics relaxes
the requirement for small bunch length imposed by the
“hourglass effect” while maintaining high luminosity.  In
the example given, βy

*  is 3 times larger for round beams

than for flat beams, and the required bunch length would
be a factor of 3 longer.  This allows a very large
relaxation of impedance and accelerating voltage
requirements compared with flat beam operation.

We plan to operate CESR at low energy without and
with damping wigglers to study beam-beam behavior as
the damping decrement is varied, and to further benchmark
ODYSSEUS code.
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EXPERIMENTAL STUDIES OF BEAM-BEAM EFFECTS AT VEPP-2M

P.M. Ivanov, I.N. Nesterenko, E.A. Perevedentsev, Yu.M. Shatunov, A.A. Valishev
Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia

Abstract

In this work we present the last experimental results of co-
herent dipole synchro-betatron beam-beam modes obser-
vation at the VEPP-2M storage ring, flip-flop phenomena
and so-called dynamic beta effect. Experimental results are
compared with analytical and numerical models. A split of
coherent beam-beam modes related to the beam-beam pa-
rameter is evaluated. An influence of the bunch length and
beta-function at IP on the flip-flop phenomena and the dy-
namic beta effect is discussed.

1 OBSERVATION OF THE DYNAMIC
BETA EFFECT FOR VARIOUS BUNCH

LENGTHS.

In the first approximation the beam-beam interaction can
be considered as an additional focusing lens which perturbs
the initial lattice functions of a storage ring. The distortion
of the lattice function results in reduction of the beam life
time and essentially influences the background loading of
the detector. The influence of dynamic beta effect on CESR
operation has initiated a series of papers [1, 2], in which the
feasible methods of this effect reduction are discussed. Dis-
tortion of the storage ring lattice functions leads to change
in the beam emittance generation conditions. Therefore it
is necessary to take this effect into consideration in simu-
lation of the beam-beam interaction and provide dynamic
perturbation of the emittance in the presence of counter-
beam as well as correct generation of its initial value. Paper
[3] gives analytical calculation of this effect.

In this work the experimental results of the dynamic
beta effect observation at different bunch lengths and β-
functions at IP are presented. They were received at the
VEPP-2M collider (Novosibirsk) [4] in summer, 2000. A
computer simulation of this effect for various values of the
parameter σs/β∗ (ratio of the longitudinal bunch size to the
β-function at IP) has been carried out and the results have
been compared to the experiment.

1.1 Basic formulae

For particles with small betatron oscillation amplitudes
(< σ, σ being the Gaussian beam size) the opposite bunch
can be considered as a focusing lens with the gradient
which depends only on longitudinal coordinate s:

gx,y(s) = g∗x,y · exp
(
− s2

2σ2
eff

)/√
1 +

s2

β∗2
x,y

. (1)

Here σeff = σs/2 is the effective length of beam-beam
interaction region. Exponential dependence results from
the Gaussian distribution of particles in a bunch and the

term
√

1 + s2
/
β∗2
x,y is related to the change of verti-

cal/horizontal beam size caused by the β-function variation
in experimental straight section. Coefficient g∗

x,y is derived
from the normalizing condition:

∮
βx,y(s) · gx,y(s)ds = 4πξx,y , (2)

ξx,y is the beam-beam space charge parameter.
Calculation of the β-function distortion in the stor-

age ring VEPP-2M has been done using the RING code.
The beam was sliced in longitudinal direction in 30 parts
(lenses) with equal lengths. The gradient value in each lens
varied vs. its position relative to the IP according to the for-
mula (1). The 4 × 4 matrix which transforms the betatron
coordinates through a slice has a block-diagonal structure:

(
Gx 0
0 Gy

)
.

Here Gx,y are 2 × 2 matrices of the focusing quadrupole
lens.

1.2 Experimental results

The vertical beam size was measured by digital cameras
with linear CCD-sensor, one for the positron bunch and two
for the electron bunch. One of the electron cameras was
located in a place similar to the positron camera (the β-
function value and the betatron phase with respect to IP).
The betatron phase between the observation and interaction
points equals to π/2. Another electron camera was located
in an additional place with the betatron phase difference
with respect to IP equal to π (Fig. 1).

If the beam size is measured in two proper points (with
the betatron phases difference of π/2) then it is possible
to receive information about the space charge parameter ξ
value without any external influence on the beam.

Observations were carried out at the beam energy E=392
MeV in strong-weak operation mode. The positron beam
always had greater current. Such option eliminates possible
additional focussing of electrons due to the presence of ion
clouds. The electron beam current value was considered
small if relative change of the strong positron beam size
was less than 10%.
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Figure 1: Layout of the experiment. SQ1 (8 thin green
lines) is the family of skew–quadrupoles for the betatron
coupling compensation. SQ2 (4 thick blue lines) is the fam-
ily of skew–quadrupoles for creating dispersion function in
bending magnets. CMD2 and SND are particle detectors.
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Figure 2: Normalized sizes of the electron beam at two
observation points vs. the positron beam current.

We have chosen the following ratio as the value describ-
ing dynamic beta effect:

σ̃2
3A

σ̃2
4A

/
σ2

3A

σ2
4A

=
β̃3A

β̃4A

/
β3A

β4A
.

Here σ3A, σ4A, β3A, β4A are the electron beam sizes and
beta-functions in the absence of positron beam at observa-
tion points 3A, 4A, accordingly, and σ̃3A, σ̃4A, β̃3A, β̃4A

are these values with the presence of the positron beam.
This ratio does not depend any more on the beam emittance
and can describe the ”clean” dynamic beta effect. Normal-
ization on σ2

3A/σ
2
4A is done for equal scaling of all results.

In Fig. 2 the normalized beam sizes vs. the positron

beam current are shown. The beam size in 4A observa-
tion point grows regardless of the fact that δβ4A (distortion
of β-function) is negative. This fact shows that the beam
emittance growth is much more than dynamic distortion of
the β-function at this point.

Ratio σs/β
∗ is the key parameter influencing the dy-

namic distortion of storage ring lattice functions. It is pos-
sible to provide various values of this parameter in two
ways:

• by regulating voltage of the accelerating RF field

• by changing value of the β-function at IP.

We used both ways of this parameter variation to expand
the range of its accessible values.
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Figure 3: Ratio of the dynamic β-functions at two observa-
tion points (3A and 4A in Fig. 1) vs. the beam-beam pa-
rameter ξ. Initial β3A/β4A = 2.0, ratio of the longitudinal
size and beta-function at the IP (σs/β∗) was 1.2. Relative
beta distortion at the IP (δβ∗/β∗) at ξ = 0.08 was 0.31.
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Figure 4: Ratio of the dynamic β-functions at two ob-
servation points vs. the beam-beam parameter ξ. Initial
β3A/β4A = 2.0, σs/β∗ = 0.5, δβ∗/β∗ = 0.36.

In Figs. 3, 4, 5, 6 the experimental data and the numer-
ical calculation results of the dynamic beta effect for some
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Figure 5: Ratio of the dynamic β-functions at two ob-
servation points vs. the beam-beam parameter ξ. Initial
β3A/β4A = 1.6, σs/β∗ = 1.0, δβ∗/β∗ = 0.29.
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Figure 6: Ratio of the dynamic β-functions at two ob-
servation points vs. the beam-beam parameter ξ. Initial
β3A/β4A = 1.6, σs/β∗ = 0.4, δβ∗/β∗ = 0.35.

typical values of parameter σs/β∗ and two different values
of the β∗-function at IP (β∗ = 4.2 cm and β∗ = 4.8 cm) are
demonstrated. Satisfactory agreement of the simulation re-
sults with received experimental data is observed. Visible
deviations of the simulation from the experimental data in
Fig. 3 in the range of high ξ are apparently connected with
the nonlinearity of the beam-beam interaction which is not
taken into account in simulation. Distinctions revealed in
the experimental dependencies of the dynamic beta effect
require further interpretation. In the future it is planned to
compare the experimental data with results of strong-weak
beam-beam simulation codes.

2 FLIP-FLOP PHENOMENON
OBSERVATION.

Typically the beam-beam interaction at modern colliders
results in the vertical beam size increase with the growth of
counter beam current. Sometimes an essential difference

in vertical size of the counter-bunches is observed even at
equal bunch intensities (the so-called “flip-flop” effect). In
this case one bunch has the size close to the initial one
while the other is much greater. If an external perturbation
is applied the bunch sizes may interchange. The flip-flop
effect appears only at bunch intensities exceeding some
threshold value. In paper [5] the phenomenological model
of the flip-flop effect is investigated. Using the given model
it is possible to predict the appearance and the threshold
value for the flip-flop effect.

In this work a comparison of the phenomenological
model with experimental data is presented. The experimen-
tal data were received at VEPP–2M in summer, 2000. The
effect of two different conditions of the vertical emittance
buildup on the flip-flop stability is considered. It is shown
that the non-resonant generation of the vertical emittance
(i.e. by excitation of the vertical dispersion in bending
magnets) permits to increase the blowup threshold in com-
parison with the mode when the emittance is determined by
coupling of vertical and horizontal betatron oscillations or
by vicinity of the betatron tune to coupling resonance.

2.1 Phenomenological model of the flip-flop ef-
fect.

To predict a possibility and conditions of the flip-flop ap-
pearance we consider properties of the self-consistent solu-
tion for the system: {

σp = f(ξe)
σe = f(ξp)

. (3)

Here each equation describes change of the vertical beam
size vs. the space charge parameter of the counter bunch
ξ in strong - weak operation mode. It is assumed that ξ
depends on current (I) and size (σ) of the counter bunch at
IP. Thus the equations (3) can be rewritten in the following
way (with equal beam currents):{

σp(I) = f(I, σe(I))
σe(I) = f(I, σp(I)) . (4)

The obvious solution of system (4) is the solution with
equal sizes σp(I) = σe(I). In the case when ∂f/∂σ > 1
the solution with equal sizes becomes unstable. The
threshold current value can be found from condition
∂f(I∗, σ)/∂σ = 1, where we denote σ = σp(I∗) =
σe(I∗).

2.2 Experimental results.

For observation of the flip-flop effect the diagnostics sys-
tem described in section 1.2 was used. Measurements were
carried out in two different modes of the vertical emittance
buildup. These optics modifications were created as fol-
lows:

1. The initial optics with minimally possible betatron
coupling εy/εx < 0.01 and vertical dispersion func-
tion ηy ≈ 0 was tuned. This optics then was a basis
for modes described in items 2 and 3.
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2. The optics with vertical dispersion ηy �= 0 in bend-
ing magnets was created using skew-quadrupole fam-
ily SQ2 (see Fig. 1) without excitation of the betatron
coupling. This way of vertical emittance buildup is
named non-resonant.

3. The optics with vertical emittance equal to one in
the previous mode was done using another skew-
quadrupole family SQ1. In this case the emittance was
generated only due to betatron coupling and without
excitation of ηy .

Equality of vertical emittances in the two optics was con-
trolled by monitoring the vertical beam size without the
counter beam with CCD cameras.

Experimental dependencies of the beam size vs. the col-
liding beam current received in two optics modifications in
strong-weak mode were used for generation of system (4).
The received system of equations was solved numerically.

In Figs.7, 8, the experimental data and numerical solu-
tions of the system (4) are presented at the two different
options of emittance generation. In the resonant case at
currents higher than 3.6 mA the flip-flop effect is observed.
The threshold predicted by the phenomenological theory
coincides well with the observed in experiment. In the
non-resonant regime the flip-flop threshold is essentially
increased.

Although the phenomenological theory is in good agree-
ment with the experiment in prediction of the threshold in-
tensity value the self-consistent solution itself shows an es-
sential difference with experimental dependencies obtained
in strong-strong mode. The theory does not explain why
optics with non-resonant vertical emittance formation is
more robust to flip-flop. The obtained experimental data
show the preference of non-resonant optics for circular col-
liders, especially for round beam operation.
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Figure 8: Normalized size at two observation points vs. the
beam current, simulation and experiment. Non-resonant
vertical emittance forming.

3 OBSERVATION OF COHERENT
SYNCHRO-BETATRON BEAM-BEAM

MODES.

Among the beam-beam phenomena there is a large group
of effects concerning the coherent motion of colliding
bunches [6]-[9]. It has been recently proposed that a fi-
nite length of colliding bunches can lead to the coupling of
synchro-betatron modes in the beam-beam system (Fig.9)
and affect the beam stability [10]. However, there was no
experimental evidence of existence of such modes at the
present colliders. This paper gives an outline of the theory
and presents the experimental investigation of the synchro-
betatron beam-beam modes at the VEPP-2M collider, com-
paring the measured data with theoretical predictions.

0,π

0,σ −1,σ

−1,π

IP

−2,σ

−2,π

IP IP

Figure 9: Naming convention for the synchro-betatron
beam-beam modes.

3.1 Theory: Mode Spectrum

The dipole motion of bunches, coupled via the beam-
beam force can be expressed in terms of coherent synchro-
betatron modes. Usually the betatron coupling between the
transverse degrees of freedom is small, and therefore a sep-
arate treatment of horizontal and vertical synchro-betatron
oscillations is a good approximation. Since the rise time of
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the head-tail instability is much shorter than the radiation
damping time in e+e− machines, we can drop the radiative
effects in what follows.

For the case of small betatron oscillation amplitudes it
is often allowable to linearize the transverse force exerted
by the beams on each other. This linearized beam-beam
interaction is considered here.

We study the dipole moments as functions of the longi-
tudinal position in the bunch. Discrete approximation of
the appropriate eigen-functions allows to reduce the task to
linear algebra.

We use the so-called “hollow beam” model. It assumes
that all particles of the bunch have equal synchrotron am-
plitudes and are evenly spread over the synchrotron phase,
forming a circle in the synchrotron phase space. This circle
is divided into N mesh elements, each characterized by its
transverse dipole moment (2 variables) and its number cor-
responding to its synchrotron phase. In the arcs synchro-
betatron oscillations of the elements forming a bunch are
represented by the 2N × 2N matrix M = C ⊗ B, where
⊗ denotes the outer product, B is the betatron oscillation
matrix of dimension 2 × 2, C is the N ×N circulant ma-
trix [11], which transports the dipole moment around the
circle formed by the mesh elements with fixed synchrotron
phases and thus performs a synchro-betatron mapping of
2N variables for each of the colliding bunches.

The linearized beam-beam interaction is described by a
4N ×4N matrix Mbb consisting of consecutive short kicks
and drifts between interactions of macroparticles sitting in
each mesh, and assumed to be transversely-rigid Gaussian
disks [7].

The complete one-turn matrix is the product of the arc
matrix M and the beam-beam matrix Mbb. Its ξ-dependent
eigenvalues and eigenvectors completely characterize the
synchro-betatron modes of the beam-beam system and can
be obtained numerically using a computer algebra system
[12], see an example in Fig.10.
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3.2 Observation techniques

Vertical coherent oscillations of the bunches were observed
using the beam synchrotron radiation from the dipoles. The
optical image of the beam was focused into the movable
screen plane (Fig. 11). The screen was cutting off a por-
tion of the light in the beam image plane. For a fixed edge
position, a displacement of the beam centroid resulted in
modulation of the light flux.
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Figure 11: Edge detector scheme.

The light which passed through the optical system then
fell on the PMT (Fig. 12). The PMT signal, with mod-
ulation proportional to the beam displacement, was fed to
the fast ADC input. In our system we used the CAMAC-
standard 8-bit ADC with the 8k read buffer and minimum
transform time of 10 ns. The PMT bandwidth was adjusted
to observe separate turns of the bunch in the storage ring.
The ADC clock rate was exactly equal to the beam revolu-
tion frequency and the phase was locked to the RF phase of
the bunch. Timing of the ADC start with the high voltage
beam excitation pulse was performed using the multichan-
nel time interval generator (TIG in Fig.12): the TIG trigger
signals were passed to both the ADC and the HV generator.

f0

PMT

HV
Generator

Pulse

RF
timing

DL

HV
SupplyOscilloscope

1:100

f0

ADC
input

timing

TIG
out #1

out #2

start

SPG input

C
   

A
   

M
   

A
   

C

PC

Crate

Controller

..

.

SR screen
edge

VEPP-2M

kicker

Figure 12: Block diagram of the experimental setup.

The similar observation channel was implemented for
the positron beam. For synchronization of the electron and

38



positron channels the clock pulse splitter was used with the
delay correction tuned by means of the additional cable in
the positron channel.

The HV pulse generator gave a one-turn kick to the
bunch, with an adjustable amplitude of the excited oscil-
lations. A minimum amplitude was equal to 0.2σ, σ being
the Gaussian vertical beam size. The kicker plate termi-
nated in a matched load, to kick only the electron bunch.

3.3 Experimental results

The center of mass positions of the colliding bunches were
sampled turn-by-turn. The Fourier transform of the col-
lected data gave the coherent mode spectrum, where the
proposed synchro-betatron modes of the beam-beam sys-
tem were experimentally detected, and their spectrum was
measured as a function of the beam-beam parameter at dif-
ferent synchrotron tunes.

The complete results of the coherent beam-beam mode
spectra calculation with the account of the finite bunch
length are presented in [10, 12]. Since VEPP-2M had a
negligible transverse impedance, we compare these exper-
imental data with the simulation results for the case where
the collective interaction is completely due to beam-beam.
Fig.13 shows the dependence of the measured and calcu-
lated synchro-betatron mode tunes on the beam current for
equal electron and positron bunch intensities.
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Figure 13: Measured(circles) and calculated (lines)
synchro-betatron mode tunes vs the beam-beam parame-
ter ξ. VEPP-2M was operated with one e+ and one e−

bunches colliding at two IPs, νβ = 0.101, νs = 0.0069,
β∗ = 6 cm, and the bunch length was 3.5 cm.

In perfect agreement with the theoretical model, the
measurement has shown that besides the leading σ and π
modes a number of synchro-betatron modes coupled via
the beam-beam force exist in the dipole mode spectrum.
These modes show up and disappear with the beam cur-
rent change due to ξ-dependence of the beam-beam mode
eigen-states. For the ξ value less than the synchrotron
tune νs, the state excited with the kick consists of only
two beam-beam modes, σ and π, with the synchrotron

wavenumber m = 0. In the range νs < ξ < 2νs the ini-
tial condition is the combination of four eigenmodes: −1σ,
0σ, 0π, +1π. Here the first index labels the synchrotron
wavenumber, the second labels the coherent beam-beam
eigenmodes with even and odd symmetry between the two
colliding bunches, respectively. With larger ξ the dipole
moment passes on to −2σ, +2π and later to −3σ, +3π
σ modes. Because of small coupling of modes with large
synchrotron wavenumber these transitions do not show an
apparent tune split.

An important parameter in the coherent beam-beam ef-
fect is the ratio Y between the coherent beam-beam σ and
π modes tune split ∆ν and ξ. The rigid Gaussian beam
model [7] predicts the ratio ∆ν/ξ = 1.0. With non-rigid
beams, solution of the Vlasov equation [9] gives for our
case of flat beam and vertical oscillations ∆ν/ξ = 1.21.

In our experiment ∆ν(I) was evaluated by fitting the
theoretical mode spectrum to the whole dataset of the mea-
sured spectrum, using a single fitting parameter, Y ξ. Then
ξ(I) was evaluated from the luminosity measurement:

ξy =
2ereβy
γI

L .

The main inaccuracy in ξ thus evaluated is due to statistical
straggling of on-line L data and equals to ∼ 10%. A good
linearity of L vs

√
I evidenced for current-independent

beam sizes at the IP, i.e. we had ξ ∝ I without saturation,
in the whole range of currents used. From our experiment
we have found Y = ∆ν/ξ = 1.05.

This result can be related to our experimental procedure.
Indeed, after the kick the transverse beam density distri-
bution does not change during the measurement period of
8192 turns (or effectively less, limited by decoherence).
This is much less than the radiation damping time. For this
reason the situation appears to be equivalent to interaction
of two transversely-rigid Gaussian bunches.

The observation system allowed to discover the synchro-
betatron modes in the spectrum of coherent oscillations
of colliding bunches at the VEPP-2M collider. The mea-
sured spectra dependence on the beam current is in ex-
cellent agreement with analytical and numerical models
[10, 12]. The measured coherent beam-beam mode tune
split is 1.05ξ. This is close to the value expected from the
rigid Gaussian model which seems to be adequate to the
used experimental technique.

The above presented experimental evidence of the syn-
chro-betatron beam-beam modes adds confidence to the
conclusions of their theory. One of them is that for the
negligible transverse impedance the mode system remains
stable unless some of the mode tunes reach a half-integer
resonance.

On the other hand, calculations involving the machine
impedance predict a coherent beam-beam instability with-
out a threshold. Some, though not all, of the synchro-
betatron modes can be damped by optimizing the betatron
tune chromaticity. Since the theoretical models [10, 12]
used the linearized beam-beam interaction, their prediction
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of instability is not as conclusive as the above prediction
of stability. In a realistic nonlinear beam-beam system one
can expect saturation of such an instability at amplitudes of
the order of the vertical beam size. However, this mecha-
nism can cause a vertical emittance blowup detrimental to
the high performance of the flat-beam colliders.
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RHIC AS A TEST BENCH FOR BEAM-BEAM STUDIES �

W. Fischer and S. Peggs, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

The Relativistic Heavy Ion Collider (RHIC) is the only
existing hadron collider where strong-strong beam-beam
effects may occur. It is therefore a good test bench for fu-
ture hadron colliders for which these effects are relevant.
RHIC now approaches its design parameters and its instru-
mentation is sufficiently developed to allow for beam-beam
experiments.

1 INTRODUCTION

The Relativistic Heavy Ion Collider (RHIC) went into
operation in 2000. The machine has six interaction points
(IPs) and supports currently four experiments (see Fig. 1).
With gold beams, 10% of the design luminosity was
reached in 2000 [1] and more than 25% in 2001. The main
machine parameters are summarized in Tab. 1 (a complete
list can be found in Ref. [2]).

Beams of equal species collide nominally without a
crossing angle. The beams are split horizontally by dipoles
(DX) about 10m from the interaction point (see Fig. 2).
With 120 or less bunches, symmetrically filled, there are
no parasitic beam-beam crossings. Because of this, only
a limited number of bunches in both rings are coupled to-
gether through beam-beam interactions. With six interac-
tion points, a group of 3 symmetrically distributed bunches
in one ring is coupled to a group of of 3 bunches in the

�Work supported by U.S. Department of Energy under contract No
DE-AC02-98CH10886.
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Figure 1: RHIC layout. In stores, only 6 bunches, 3 sym-
metrically distributed in each ring, are coupled together
through the beam-beam interaction.
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Figure 2: RHIC interaction region layout. The bunches
shown correspond to a fill pattern of 120 equally spaced
bunches.

other ring, also symmetrically distributed. Every bunch of
one group interacts with every bunch of the other group.
This can be inferred from Fig. 1. If there is a small dif-
ference between the radio frequencies of both rings (see
below), all bunches can be coupled together by beam-beam
interactions.

When two identical Gaussian beams collide, the hori-
zontal and vertical beam-beam parameters are given by

�x;y =
r

2�

Nb �x;y

�x;y(�x + �y)
(1)

where Nb is the single bunch population, the classical ra-
dius r is rp = 1:5347 � 10�18 meters for protons and
rAu = 48:992 � 10�18 meters for gold. �x;y is the beta
function, �x;y the transverse rms beam size, and  is the
Lorentz factor. Assuming round beams (�x = �y = �t),
(�x = �y = �) and using as definition for the normalized
emittance

�N = (�)
6�2

�t
; (2)

Eq. (1) can be written as

� =
3Nbr

2 �N
: (3)

Note that the beam-beam parameter is independent of en-
ergy (), and independent of the lattice function � t. The
tune shift of small amplitude particles due to each colli-
sion is equal to the parameter � no matter what the az-
imuthal location of the collision, if the beams are round and
if they collide head-on. Expected beam-beam parameters
are listed in Tab. 1. It may be convenient to parameterize
the gold and proton beam-beam parameters as

�Au = 0:0023
Nb

109
10�m

�N
(4)

and

�p = 0:0074
Nb

1011
10�m

�N
: (5)
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Table 1: RHIC principal machine parameters. The column labeled Au2001 shows machine parameters that were achieved
with gold beams. The columns labeled A2001+ and p2001+ show machine parameters expected to be approached in the
foreseeable future with gold and polarized proton beams respectively.

parameter symbol unit Au design Au2001 Au2001+ p design p2001+
collisions per turn ... ... 2–6 2–6 2–6 2–6 2–6
kinetic energy range E GeV/u 10-100 9–100 9–100 25-250 25-250
harmonic number h ... 7�360 360 7�360 7�360 7�360
gap voltage V MV 6.0 0.3 3.0 6.0 3.0
number of bunches N ... 60 56 110 60 110
ions per bunch Nb ... 109 0.5�109 109 1011 1011

normalized emittance (95%)y �N x;y �m 10 10 10 20 10
bunch area S95% eV�s/u 0.5 1.0 0.5 0.5 0.5
average luminosity L cm�2s�1 2�1026 2�1025 2�1026 1031 2�1031

beam-beam parameter, per IP �x;y ... 0.0023 0.0012 0.0023 0.0037 0.0074
y At the beginning of stores.

With ax;y denoting the betatron amplitudes at the IP and
defining the variables �x;y = (ax;y=�x;y)

2=4, the weak-
strong amplitude dependent tune shift due to head-on col-
lisions can be written as [3]

�Qx;y = ��x;y

Z 1

0

du exp [�(�x + �y)u] � (6)

�I0(�y;xu) [I0(�x;yu)� I1(�x;yu)] ;

where I0 and I1 denote the modified Bessel functions of
zero and first order respectively.

2 EXPECTED BEAM-BEAM EFFECTS

2.1 Weak-Strong Effects

The beam-beam interaction leads to incoherent and co-
herent tune shifts [4]. These can can put limitations on the
working point. Furthermore, nonlinear resonances may be
driven that lead to emittance growth and beam loss. These
effects can be further enhanced through nonlinear magnetic
field errors and tune modulation. In Fig. 3 a tune footprint
is shown for the Au2001+ scenario (see Tab. 1) at the tunes
(Qx; Qy) = (28:22; 29:23), which are close to the ones
currently used in operation. It is assumed, that beams are
colliding in four IPs and are transversely separated in the
other two IPs. Sum resonances up to order 9 are added. In
Fig. 4 a tune footprint for the p2001+ scenario is shown for
collisions at two IPs and transverse separation at the other
four IPs. A working point that avoids the resonances is
likely to improve the lifetime.

For comparison, significant beam-beam effects are no-
ticed in proton colliders when � = 0:004, with 6 head-on
collisions per turn [5]. Increased background rates were
observed in the SPS when the tune approached resonances
of order 13 and 16 [6].

2.2 Strong-Strong Effects

With beams of high and almost equal intensities coher-
ent modes of transverse oscillation (� and � modes) may
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Figure 3: Beam-beam footprint for amplitudes up to 6 rms
beam sizes with the Au2001+ parameters and four IPs. The
working point is (Qx; Qy) = (28:22; 29:23). Also shown
are sum resonances of order 9.

become visible. The simulation in Ref. [7] clearly shows
these modes in the transverse spectra for a single bunch
of beam in each ring at the gold design parameters (see
Tab. 1). Should the � mode be outside the continuum spec-
trum, it will not be damped.

A simulation in Ref. [8] showed unstable beam cen-
troid oscillations when the beam-beam parameter becomes
larger than a critical value, � > �c. The growth rate of the
unstable amplitude oscillations is enhanced through non-
linear field errors in the lattice. Furthermore, transverse
emittance growth is strongly enhanced under these condi-
tions.

3 BEAM-BEAM OBSERVATIONS
DURING OPERATION

Up to now colliding beams were only achieved in gold
operation. A coherent tune shift of about 10�3 was mea-
sured when beams with 0.3�109 ions were brought in and
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Figure 4: Beam-beam footprint for amplitudes up to 6 rms
beam sizes with the p2001+ parameters and two IPs.

out of collision longitudinally. This seems to indicate a rel-
atively minor effect. However, frequently a lifetime deteri-
oration is observed when the beams are brought into colli-
sion. Fig. 5 shows such a case at storage energy. Usually
the lifetime can be improved by adjusting the general beam
conditions such as closed orbit, tune and chromaticity.

In RHIC, the rf systems of both rings are independent
since it is planned to accelerate different ion species, which
may require different radio frequencies. Thus, the radio
frequencies of the Blue and Yellow ring can differ when
the phase and radial loops are closed. The small radio
frequency difference results in beam-beam collisions with
longitudinally moving crossing locations. At injection, this
leads reproducibly to lifetime problems in one of the two
beams and a scheme was implemented to enforce equal ra-
dio frequencies and separate the beams longitudinally [9].

More recently, beam losses along the ramp (when the rf
loops are closed and a small difference in the radio frequen-
cies exist) were also attributed to the beam-beam interac-
tion [10], and a transverse separation was implemented in
the interaction regions along the ramp to ameliorate the ef-
fect [11].

The deterioration of lifetime when both beams have dif-
ferent radio frequencies can be explained by tune modula-
tion that is caused through the longitudinal movement of
the interaction point through the interaction region [12].
Typical differences in the radio frequencies lead to tune
modulation frequencies of the order of 1 Hz with modu-
lation depth of up to a few 10

�3.

During stores a transverse emittance growth was ob-
served that is much larger than expectations from intra-
beam scattering [13, 14], which may be caused by beam-
beam interactions. Furthermore, there are indications that
the transverse emittance growth increases during vernier
scans (in which the luminosity is recorded as a function
of the transverse beam separation) when the beams collide
with a transverse offset [5, 14, 15].

Figure 5: Observed lifetime deterioration due to beam-
beam effect in gold operation.

(a)                        (b) 
 

200ns 200ns 

Figure 6: One Blue (upper) and one Yellow (lower) bunch
seed with a wall current monitor located at an IP. Due to the
different current directions of both beams, the wall current
has a positive sign for one and a negative sign for the other
beam. In part (a) the beams are not colliding at the IP, in
part (b) they do.

4 POSSIBLE BEAM MANIPULATIONS
IN INTERACTION REGIONS

At storage the beam positions in the interaction regions
are manipulated longitudinally and transversely. Longitu-
dinally the beam can be separated or brought into collision
(see Fig. 6). The IP can be moved to any location between
the crotches (see Fig. 2). By shifting the IP between the
DX magnet and the crotch a crossing with up to 90mm hor-
izontal separation (80� at storage energy for�N=10�m and
�� = 5m) can be achieved. The IP location can be changed
in steps of 30mm. With a small radio frequency difference
between the rings the IP can also be shifted continuously.
This happens routinely during ramps when both rings run
with independent phase and radial loops.

Transversely any of the two beams can be moved later-
ally in steps of 10�m. The crossing angle can be changed
in steps of 1�m (see Fig. 7). The beam movement is ob-
servable in the dual plane DX BPMs (see Fig. 2). Trans-
verse separations of more than 100 transverse rms beam
sizes and beam-to-beam crossing angles of at least 2mrad
can be implemented [16].
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Figure 7: Transverse beam manipulations seen in the DX
BPMs. Shown is the angular and lateral movement of the
Blue beam at IP6.

5 INSTRUMENTATION FOR
EXPERIMENTS

The instrumentation for beam observations has been de-
veloped and commissioned over the last few years. The
current and future capabilities of the main systems are
listed below.

Beam Position Monitors In the arcs every quadrupole
is equipped with a single plane beam position monitor
(BPM). In the interaction regions every quadrupole is
equipped with a dual plane beam position monitor. Dual
plan BPMs are also located at the inner sides of the beam
splitting DX magnets (see Fig. 2) with only a drift space
in between. With a trigger signal 128 or 1024 consecutive
turns can be read out from every BPM. In the future, two
BPMs per plane and ring may deliver 105 to 10

6 turns.

Wall Current Monitor Several wall current monitors
(WCMs) are available. Typically a full turn can be recorded
every 4s with a resolution of 0.25ns (accelerating buckets
are 36ns, storage buckets 5ns long).

Ionization Profile Monitor Horizontal and vertical
beam profile monitors are available from ionization profile
monitors (IPMs) [22]. Currently profiles are obtained from
single bunch stores every 4s. With more R&D it may be
possible to get profiles from an arbitrary bunch in a regular
store (56 or 110 bunches) every 4s. An IPM may also be
able to record up to 125000 consecutive turns of a single
bunch.

Tune Meters Tunes are available from a system that
excites the beam with a small number of small kicks, reads
out the beam response in a BPM and computes the Fast
Fourier Transform [20]. The resolution of this system is
10
�4. At injection, the tune can also be determined from

the spectrum of the injection oscillations. In addition, the
tune and tune spread can be measured with a Schottky mon-
itor [21].

Kickers Several kickers are available to excite coher-
ent beam oscillations. The tune kickers [20] can provide a
0.2� horizontal and a 0.1� vertical kick at injection. The
injection kicker could provide a vertical kick of more than
5� at injection. At storage energy the kick strength is re-
duced accordingly.

AC Dipole AC dipoles for both the horizontal and ver-
tical plane will be installed in RHIC. These devices excite
coherent dipole oscillation through an AC dipole field run-
ning close to the betatron frequencies. With such a resonant
drive, in principle, any amplitude can be excited. The AC
dipoles can be switched off in about 10 turns to provide free
coherent betatron oscillations like through a kicker. The
AC dipoles are located close to an interaction point and
shared by both beams.

Pulsed Quadrupole A pulsed quadrupole will be
available in the future, also shared by both beams.
This quadrupole is intended for transverse echo measure-
ments [24] and would provide a one turn quadrupole kick.
The pulsed quadrupole would change the tune by about
0.002 when run continuously at injection.

6 POSSIBLE BEAM-BEAM
EXPERIMENTS

Beam-beam experiments can be done at injection as well
as at storage since the beam-beam parameter � is indepen-
dent of the energy (see Eq. (3)). Experiments at storage
energy may be more convenient since orbits are already
prepared for collision. However, destructive measurements
are best done at injection, since the beam can be restored in
a few seconds.

As a basic measurement the coherent tune shift with
bunches longitudinally separated or in collision can be de-
termined. Furthermore, the coherent tune shift can be mea-
sured as a function of transverse separation, once the bunch
intensity is high enough to allow this, given the resolution
of the tune measurement. The Schottky system allows to
measure the tune and tune spread in the beam. Schottky
measurements can also identify beam trapped in resonance
islands.

6.1 Weak-Strong Effects

To measure weak-strong effects one beam should have
a large and one a small intensity. The weaker beam is
used for the measurements. In addition to the tune mea-
surements described above, emittance growths can be mea-
sured as a function of several parameters such as the tune
or the transverse offset. The transverse offset can be made
as large as 80� (see above). With IPMs or a scraper, am-
plitude dependent diffusion may also be determined.
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6.2 Strong-Strong Effects

Tune measurements and emittance growth can also be
measured with both beams at high intensity. But in addi-
tion, coherent modes may be studied. For this only one in-
teraction is desirable with the maximum intensity possible
in both beams. A coherent excitation reveals if the �-mode
is damped. In addition, with many-turn BPM observation
it can be revealed if the center-of-mass undergoes chaotic
motion as predicted in Ref. [8].

7 SUMMARY

With RHIC operational and its instrumentation devel-
oped, the machine can serve as a test bench for beam-beam
effects. Better than any other existing machine, it is suited
to investigate strong-strong effects in hadron colliders.
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Summary of Observation Session.

A. Temnykh �

Laboratory of Nuclear Studies, Cornell University, Ithaca NY 14953, USA

Abstract

Here is given a short summary of data presented on ”Ob-
servation” session on Beam-Beam workshop held at FNAL
from June 25 to June 28 2001.

1 INTRODUCTION

Since the beginning of colliding beams era the beam-
beam interaction phenomenon attracted much attention be-
cause of the role of this phenomenon in colliders perfor-
mance limitation. Theory developing, numerical simula-
tions and experimental studies in the past decades pro-
vided significant progress in understanding of the phe-
nomenon. The most recently built B - factories, Pep-II and
KEKB, even though having complicated beam colliding
scheme (different colliding beams energies, crossing angle)
reached excellent beam-beam performance (� � 0:05) and
high luminosity in very short period of time.

However, many features of the beam-beam interaction
such as dependence � on damping, coupling, machine non-
linearity and etc. still are not well understood. Better un-
derstanding may lead to a significant progress in efficiency
of the existing and future colliders.

One task of the ”Observation” session was to review a
recently collected experimental data in order to evaluate
recommendations which can be useful in future planning.

The data presented on the session came from two low en-
ergy lepton colliders VEPP-2M (Novosibirsk) and DA�NE
(Frascati) and from ion-ion collider RHIC (Brookhaven).

2 RECENT BEAM-BEAM
OBSERVATION ON VEPP-2M [1]

Three recent experiments were reported from VEPP-2M.
� Dynamic Beta Effect. This effect is in fact distortion of

the linear machine optics caused by interaction of one beam
particles with an opposite beam. In the study, vertical beam
size of weak electron beam collided with strong positron
beam was monitored at two different locations along the
beam trajectory. The distortion of vertical beta-function
was calculated from the change of ratio of beam hights at
these locations. Beta function distortion was measured as
a function of positron beam intensity for various positron
bunch length and beta function at interaction point. Under
certain condition, the vertical beta function was changed by
a factor two. The experimental data are in good agreement
with theoretical model.

� e-mail: abt6@cornell.edu

It should be mentioned that even though the effect of lin-
ear optics distortion by beam-beam interaction was known
for a long time, there were only several documented exper-
imental studies related to this phenomenon, see for exam-
ple [2]. Thus, the reported data which confirm theoretical
model in wide range of parameters is of great significance.
� Flip-Flop Phenomenon study was in line with phe-

nomenological models described in references [3], [4] and
[5].

Often in lepton colliders beam-beam interaction causes
the equal intensity colliding beams to have very different
beam sizes. This effect, called flip-flop phenomenon, may
occur when colliding beam intensities exceed the thresh-
old. Like it was done in previous work, the authors assume
that the vertical size of one beam is a function of ratio of in-
tensity to vertical size of other beam, i.e., �1 = f(I2=�2).
Note that the I2=�2 is proportional to �v parameter. Using
measured dependence of the weak beam vertical size on in-
tensity of strong beam, one can write down the system of
two equations and find solution �1;2(I1; I2) numerically.
In the case of two equal intensity beams I1 = I2 = I,
there will be single solution �1(I) = �2(I) for low inten-
sity I � Itr, and, if function f is steep enough, there will
be more then one solutions with �1(I) 6= �2(I) for higher
intensity, I � Itr . Itr is a threshold current. The multiple
solution indicates appearance of the flip-flop effect.

In general, experimental data fit well the model predic-
tion. However, there is good agreement between modeled
and measured flip-flop threshold current, but only qualita-
tive correspondence between measured and predicted de-
pendence of vertical beam sizes on beams intensity.

Results of this study confirm that the simple model us-
ing beam-beam parameter �v � I=�v and weak-strong
approximation can only qualitatively describe the dynam-
ics of colliding beams. For more realistic description one
should use more complicated model with more parameters
involved.
� Coherent Synchro-Betatron Beam-Beam Modes study

was another interesting experiment reported from VEPP-
2M on this session. In this experiment two synchrotron
light monitors with edge screens were aimed on both
counter colliding beams. The horizontal edges of the
screens were positioned to cut out part of the SR beam im-
ages projected on PMT cathode. In this scheme, the sig-
nal from PMT was very sensitive to vertical position of the
bunches. In the process of measurement, one bunch (there
was one bunch per beam) was excited by a short pulse and
then signals from both PMTs were recorded on turn-to-turn
base. Fourier analysis of the recorded signals reviled the
excited modes.
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At least 6 (!) synchro - betatron modes 0�; 1�; 2� and
0�;�1�;�2� (first index means dipole, qurupole and etc.
distribution in synchrotron space, � and � refer to the be-
tatron motion of the bunches) were seen. At low beams
intensity (�v � 0:005) two ”classical” 0� and 0� modes
were detected, while at higher intensity (�v � 0:015) two
other modes �2� and �2� were dominating. This obser-
vation is in good agreement with the theory developed early
in [6] and [7].

Note that linear theory of beam-beam interaction pre-
dicts relation between the � and � mode tune difference
and � paramer: ÆQ��� = C � � with C = 2. Calculation
accounting for nonlinearity of beam-beam force and trans-
verse density distribution gives C ' 1:4. This is confirmed
by tracking. However, experimental data for C reported
from different machines vary from 1 to 2. The reported
experiments suggested the explanation of this diversity.
On different machines different types of synchro-betatron
modes may be observed. Together with synchrotron tunes
varying from one machine to another it can explain the ob-
served variation in C value.

Understanding of the relation between the �=� modes
tune split and � may have a great practical importance. The
tune split is easy to measure. If one can establish reliable
relation between the tune split and �, then, using correlation
between luminosity and � ( L =



2ere��
�), one can use this

measurement for quantitative luminosity monitoring.

3 BEAM-BEAM OBSERVATION ON
DA�NE [8]

DA�NE is a recently commissioned low energy (�
0:5GeV) lepton collider. It started operation in May 1999
and since then is rapidly progressing by doubling lumi-
nosity approximately every 6 months. In the report the
machine upgrades which provided the beam-beam perfor-
mance and luminosity enhancement were discussed.
� Optimization of general machine parameters such

as collision parameters and global coupling shortly after
commissioning allowed to reach luminosity 0:2 � 1030

cm�2sec�1 per bunch and �v � 0:01. Further improve-
ment in coupling (�y=�x � 0:3% ) and better working point
( Qx = 5:15=5:10; Qy = 5:21=5:14 for e+=e� beams) re-
sulted in luminosity doubling,L � 0:5� 10 30 cm�2sec�1

per bunch.
� Cubic machine nonlinearity attracted attention after

the strong octupole-like component was detected in wig-
glers. That promoted intensive study of influence of ma-
chine cubic nonlinearity on the machine beam-beam per-
fomence.

Early it was found that the topology of the phase space
resulted from beam-beam interaction is very sensitive to
sign and value of machine cubic nonlinearity [9]. Chang-
ing the dependence of tune on amplitude the machine cu-
bic nonlinearity can increase or decrease the width of res-
onance islands generated by beam-beam interaction. It re-
sults in growing or in diminishing of beam tails effecting

beam life time.
Numerical simulation made for DA�NE showed the dra-

matic effect of the cubic nonlinearity generated in wigglers
on particle density distribution in the beam tails. A new
optics with reduced beta function in the wiggler locations
was designed and implemented to decrease the machine
cubic nonlinearity. It helped to improve beam-beam per-
formance, �v � 0:02, and provided luminosity growth,
L � 1:0 � 1030cm�2sec�1 per bunch. The future plans
call for octupole lenses installation for better control of ma-
chine cubic nonlinearity.

The beam-beam experience obtained on DA�NE proved
the importance of the machine cubic nonlinearity control
and demonstrated that the cubic nonlinearity tuning may
lead to substantial gain in luminosity and beam-beam per-
formance.

4 RHIC AS A TEST BENCH FOR
BEAM-BEAM STUDIES [11]

In the report presented by Wolfram Fisher, Relativistic
Heavy Ion Collider (RHIC) was described as a potential
test bench for future hadron colliders such as LHC and
VLHC. Flexibility in manipulation with beams in longitu-
dinal and transverse spaces together with well developed
beam diagnostics make possible to study many features
of beam-beam phenomenon. Although the time available
for the study is limited because of strong competition with
other programs, RHIC team is very interested and ready to
test new theories of beam-beam interaction.

5 CONCLUSION

Many interesting observations of beam-beam phe-
nomenon were reported on the session. Two of them, ob-
servation of coherent synchro-betatron modes on VEPP-
2M and dependence of beam-beam performance and lumi-
nosity on machine cubic nonlinearity observed on DA�NE
(similar were reported in [10]) are of especial importance
and it is very desirable to carry out analogous experiments
on other machines.
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FISRT EXPERIMENTS WITH ELECTRON LENS FOR BEAM-BEAM
COMPENSATION IN TEVATRON

V. Shiltsev, G.Kuznetsov, N. Solyak, D. Wildman, X.L. Zhang , FNAL, Batavia, IL 60510, USA
Yu.Alexahin, JINR, Dubna, Russia; and  K.Bishofberger, UCLA, Los-Angeles, CA 90095, USA

Abstract
The project of beam-beam compensation (BBC) in the

Tevatron using electron beams [1] has passed a successful
first step in experimental studies. The first Tevatron
electron lens (TEL) has been installed in the Tevatron,
commissioned, and demonstrated the theoretically
predicted shift of betatron frequencies of a high energy
proton beam due to a high current low energy electron
beam. After the first series of studies in March-April 2001
(total of 7 shifts), we achieved tuneshifts of 980 GeV
protons of about dQ=+0.007 with some 3 A of the
electron beam current while the proton lifetime was in the
range of 10 hours (some 24 hours at the best). Future
work will include diagnostics improvement, beam studies
with antiprotons, and fabrication of the 2nd TEL.

1 BRIEF DECRIPTION OF BEAM-BEAM
COMPENSATION  AND THE 1ST

TEVATRON ELECTRON LENS
In the Tevatron, the antiproton bunches suffer a

tuneshift due to their interactions with the more intense
proton bunches. In multibunch operation, the tuneshifts
vary from antiproton bunch to antiproton bunch, leading
to an effective spread in tune. An electron lens, consisting
of a short, low energy, electron beam colliding with
antiprotons, can induce a tuneshift on the antiproton
bunches, which has the opposite sign to that, which they
experience, from the protons. With appropriate choice of
parameters two such lenses could provide effective beam-
beam tuneshift compensation. An R&D program has
resulted in the construction and, recently, the successful
testing of a single such device. If results continue to be
positive the use of such devices could lead to a longer
luminosity lifetime in the Tevatron and hence to a large
integrated luminosity. Another potential luminosity
improvement may come from compensation of non-linear
tune spread within each antiproton bunch (footprint
compression) by using electron beams with Gaussian
profiles [2].

Fig.1 depicts a general layout of the TEL. The
magnetic system of the TEL (see details in [3]) consists of
a 65 kG SC main solenoid, four 8 kG and two 2 kG SC
dipole correctors in the same cryostat, and 4 kG gun and
collector solenoids. The TEL cryostat is part of the
Tevatron magnet string cooling system. Strong Π-shaped
magnetic field is needed to guide 10 kV electron beam
from an electron gun thru an interaction region, where
electrons collide with high energy (anti)protons, to a
water cooled collector. SC dipole correctors allow precise

steering in position and angle of the electron beam onto
the Tevatron beams. A number of precautions have been
taken during SC magnets fabrication in order to achieve
very high linearity of magnetic field lines inside the main
solenoid. The reason is that as the electron beam goes
along magnetic field lines it should not deviate around the
straight Tevatron beam trajectory, otherwise the
effectiveness of the TEL would be deteriorated.

Figure 1: General layout of  the Tevatron Electron Lens.
Measured rms deviations of the lines are 15 µm in the

vertical plane and 50 µm in the horizontal plane (which is
the plane of the bends) [4]. This is 10% of the Tevatron
beam size in the location of the electron lens. It was found
experimentally that the electron beam can be steered to
pass through the main solenoid if the gun solenoid field is
in the range of BGun=1.9-4.2 kG for Bm=35kG (outside the
range, the beam touches parts of the vacuum system) [5].

The electron gun employs a 10 mm diameter convex
thermo-cathode and can provide up to 6A of pulsed
current and 3A DC of up to 15kV electrons. Perveance of
the gun is 5.6 µA/V3/2. Electron current profile is close to
rectangular, but can be changed to a more smooth one if  a
negative potential (w.r.t. the cathode) is applied to a
special near-cathode electrode. Water cooled collector is
characterized by high-perveance of about 10 µA/V3/2 ,
high absorbing efficiency  exceeding 99.5%, and
dissipation up to 50 kW of electron beam power. See
details on the gun and collector in [5].

In order to vary electron current at the scale of the
bunch-to-bunch spacing (396ns in the Tevatron at present
Run IIa) high-voltage pulses are applied to the gun anode.
During the first studies a 8 kV, 800 ns FWHM modulator
based on RF tube has been used to provide electron pulses
synchronized with a single Tevatron bunch at the
repetition frequency of 47.7 kHz (see [6] for details).

The TEL is equipped with 4 BPMs: one vertical and
horizontal at the beginning and at the end of the main
solenoid. The BPMs are supposed to measure transverse
positions of electron, proton and antiproton beams passing
through and thus, allow the electron beam to be centered
on the antiproton or the proton one. 100 µm diameter



tungsten wires, vertical and horizontal, can be introduced
into the very middle of the interaction region for electron
current profile measurements. They are remotely
controlled and removed when high energy beams circulate
in the machine. Electron currents leaving the cathode, into
the collector and onto the collector entrance electrode are
measured by 3 inductive coils. There are 10 HV
electrodes around the electron beam trajectory which can
be used for ion or secondary electron cleaning (though
most of the time there are grounded). Beams diagnostics
employed in the TEL is described in detail in [7].

The TEL vacuum under working conditions with 3 ion
pumps with a total pumping speed of 300 l/s ranges from
4 to 10 e-8 Torr. Table 1 summarizes main parameters of
the TEL.

Table 1: TEL operational parameters
electron beam energy, Ue,, kV 6-12
maximum peak electron current Je, A 2-3.5
magnetic field in main solenoid
                        in gun solenoid

Bm, kG
Bg, kG

35
3.7

e-beam radius in main solenoid ae, mm 1.75
cathode radius ac, mm 5
e-pulse width, FWHM τe, mm ∼800
current stability, peak-to-peak ∆Je/Je,% < 0.1
effective interaction length Le, m 2.0
valve-to-valve length Ltot, m 3.65

We observed very minimal effects of the magnetic
fields of the lens on 980 GeV proton beam. Tunes are
shifted by less than 0.001 in both planes, the tune split
Qx�Qy varies from 0.0072 to 0.0077, no coupling
correctors are needed to operate the Tevatron, and the
orbit distortion around the ring stays within about 1 mm.
Measurements with  the proton beam have shown that
numerous electrodes of the TEL (BPMs, HV electrodes)
and discontinuities of the beam pipe all together generate
a broadband impedance |Z/n|< 0.1 Ohm, that is a very
small contribution to  the total Tevatron impedance
estimated to be some 2-8 Ohm.

In March-April 2001 there were total of  seven 8-hour
beam shifts dedicated to studies with the Tevatron
Electron Lens.  Most experimental results were obtained
with a single coalesced proton bunch in the ring at the
energy of 980 GeV and everywhere below we assume that
proton energy if not specifically stated. Total proton
bunch length was less then 19 ns, bunch intensity varied
from 6 to 60 ×109. The only shift at 150 GeV on March 23
was the very first one and to our great satisfaction a
decent betatron frequency shift was observed, breaking
the path for  application of electron lenses in high-energy
accelerators.

2 PROTON TUNE SHIFT DUE TO THE
ELECTRON LENS

According to [1], a perfectly steered round electron
beam with a constant current density distribution will shift
the betatron  tune  by:

  (1)

where the sign reflects defocusing for antiprotons and
focusing for protons, βe=ve/c is the electron beam
velocity, βX=101 m and βY=28 m are beta functions at the
location of the lens (the first TEL is installed in the
Tevatron sector F48), ae , Je and Le stand for the electron
beam size, current and effective interaction length, rp is
the classical proton radius, γp=1044 relativistic Lorentz
factor for 980 GeV protons. Electron beam is assumed to
be much wider than (anti)proton beam, so, all high-energy
particles acquire the same dQ. Factor 1±βe reflects the
fact that contribution of the magnetic force is βe times the
electric force contribution and depends on the direction of
the electron velocity. So far we operated only with protons
only (while the actual goal is to operate with antipron
bunches) which move in the same direction as the TEL
electrons, so the magnetic force reduces the total
tuneshift.

Figure 2: Schottky spectra of horizontal motion of protons
without electron current (top) and with 3A of electron
current (bottom), cathode potential Uc. =7.6 kV .

Fig.2 shows an example of the Schottky spectra of
horizontal proton beam oscillations without electron
current  and  with 3 A electron current. One can see that
the horizontal tune is shifted positively by about dQx

=+0.0065 from 20.5824 to 20.5889. One should expect
that the same electron beam would shift the horizontal
tune of antiprotons (1+βe /1-βe )=1.5 times this amount,
i.e., by -0.01 given that βe ≈0.2. Besides a central peak
corresponding to the betatron frequency (highlighted by
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marker line),  the spectra consist of several synchro-
betatron sidebands, separated by  the synchrotron tune Qs

≈0.0007. Total power in the peaks depends on proton
intensity and noise level exciting the beam motion.
Application of the electron beam may or may not cause
spectra shape variation as in Fig.2. The shape also
depends on the machine tuning, working point, etc. The
shape variations sometimes make precise tuneshift
measurements rather difficult, and we estimate typical
error to be δQ ≈±0.0001.   

Fig.3 shows how the proton tune shifts depend on the
time delay between the 2A electron pulse and the arrival
of the proton bunch. One can see that a) the tune shift
follows the electron pulse shape and, therefore, it�s
possible to shift the tune for any bunch without touching
neighbors 400 ns aside, and  b) horizontal tune shift is
some 4 times the vertical one dQx/dQy
=0.0037/0.0008=4.6 that is close to the beta function ratio
βX/βY=101/28=3.6. The remaining discrepancy can be
explained by either uncertainty in beta-functions, which is
known to be ±10% , small ellipticity of the electron beam,
mis-steering of  the electron beam, which might play role
if compared with ae.
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 Figure 3: Shift of the horizontal (black) and vertical
proton tunes vs delay between the proton bunch and 800
ns long, 1.96 A peak electron pulse, Uc =6.0 kV.

Having the electron beam properly synchronized for
maximum effect, we have studied dependence of dQx on
the peak electron current. The results  are presented in
Fig.4 and compared with Eq.(1). The theoretical
dependence is non-linear because the electron energy
inside the vacuum pipe and, thus,  βe, goes down with the
current due to electron space charge, Ue.=Uc.-gQSC, where
g is the geometry dependent factor. As seen in Fig.4, the
maximum discrepancy is about 20% at Je.=2 A. There are
systematic errors in a number of parameters used for
calculations, e.g., ae

2 is known within ±10%,  effective
length Le depends on precision of the steering and may
vary within ±10%, and the electron current calibration
each contribute some ±5% error. In addition there might

be some ±5% uncertainty in the electron velocity βe due
to formation of an ion cloud which shields some fraction
of the electron space-charge QSC. An indication of that is
that maximum electron current allowed to propagate
through the beam pipe at a given cathode potential of 7.5
kV goes down by 25% if the pulse repetition rate is
reduced from 47.7kHz (standard regime of operation with
a single proton bunch) to about 50 Hz.  On the other hand,
ions do not change charge density and thus do not
contribute to dQ directly most probably because of larger
transverse size of the cloud.
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 Figure 4: Shift of the horizontal proton tune vs the
electron current, Uc =7.5 kV. Circles and squares �
experimental data, solid line � Eq.(1).

It might be of interest to mention, that horizontal tune
shift for protons coming just after the electron pulse
(delay times from 0 to 400 ns in Fig.3) is slightly lower
than dQx for protons arriving right before the electron
beam enters the interaction region (delay times above
1600 ns).  The little difference of about �0.0001 electrons
(if one believes that it is not just a measurement error) can
be associated with defocusing effect due to ions freshly
attracted  inside the electron beam.
   As long as the proton beam travels inside a wider
electron beam, the proton tune shift does not depend
much on the electron beam position, e.g., for the case 1 A
electron beam dQx(dx,dy)≈dQmax=0.0021 if |dx,y|<2mm �
see Fig.5. But when distance between centers of the two
beams exceeds the electron beam radius then one should
expect dQx(dx,dy=0)≈-dQmax/(dx/ae,)2, |dx|>>ae, and
dQx(dx,=0,dy) ≈+dQmax/(dy/ae,)2 |dy|>>ae (note the sign).
Theoretical predictions dQx(dx,dy) � see smooth curves in
Fig.5 - are in a good agreement with experimental data.
The only visible discrepancy is an asymmetry in
dQx(dx,dy=0). At negative horizontal displacements, dx,y<-
2.5mm, the tuneshift does not change sign as it does at
dx,y>+2.5mm. The effect is, most probably, due to the
asymmetric Π-shape of the electron beam (see Fig.1),
which results in additional positive contribution to dQx



from the bending  portions of the beam if the protons
propagate through them.
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Figure 5: Horizontal tune shift vs horizontal (squares) and
vertical (circles) displacement  of the electron beam, Je

=1A, Uc =6.0 kV.

To summarize, we can say that experimentally observed
tuneshifts agree reasonably well with theory.

3 TEVATRON BEAM LIFETIME WITH
ELECTRON LENS

There is no formula to estimate the (anti) proton beam
lifetime τ=(dN/dt/N)-1 under impact of the TEL.
Nevertheless, analytical studies [2] and numerical
tracking [8] predict the following phenomena concerning
the lifetime: 1) τ  depends on non-linear resonances in the
vicinity of the machine working point; 2) it should
decrease if the electron beam is mis-steered and protons
experience non-linear forces of the electron beam;  but if
the beam-beam separation is very large, then the electron
beam should not affect the lifetime; 3) one should expect
better lifetime for the same  dQ  if the electron beam is
wider and its current density profile is a smooth, bell-like
function.

We found that without collisions the Tevatron proton
beam lifetime is very good over a broad range of the beam
parameters and the machine working points (WP)  Qx , Qy.
Because of the limited time of the studies, we measured
lifetimes based on 15 minutes records of the beam
intensity records. This resulted in some 50% error in 1/τ
when typical lifetime was some τ 0 =90 hours.

Collisions with the multi-Ampere electron beam did
always cause certain deterioration of the τ , but the best
lifetime was observed at good WPs. Fig.6 shows the set of
resonances up to 12th order over the range Qx,y=20.55-
20.60 which is typical for the Tevatron collider operation.
Arrows represent the tuneshift due to the TEL. The
longest one reflects the result of the very first beam study
shift, the very first attempt to operate the TEL with 150

GeV protons. All others  were obtained with 980 GeV
protons on different shifts. Numbers near each arrow
show the best lifetime achieved at that WP with the
maximum electron current. Electron and proton currents
and beam sizes were about the same for all these
observations while we can not guarantee that  the electron
beam was always steered with the same precision (see
next Section).

One can see, that the smallest lifetimes of 1.5-6 hrs
were observed when the Tevatron operated at the 7th order
resonances at  Qx,Qy=0.573,0.567, better lifetimes of 6-13
hours  at the 12th order resonances Qx,Qy=0.583,0.577,
and the best lifetime of 24 hours was achieved away from
resonances at Qx,Qy=0.564,0.555.

 

24hrs 

6hrs 
1.5hrs 

13hrs 
6hrs 

Figure 6: Proton bunch tuneshifts due to the TEL and
corresponding lifetimes.

Our experience shows that mis-steering of the electron
beam is by far the most important factor affecting the
lifetime. It can affect τ even at comparatively small
electron currents. For example, Fig.7 shows a 20 minute
record of the proton bunch population (top curve) which
originally was about 2.6e+10 and the average electron
beam current which was constant at 35mA.

The record was taken during the measurement of the
tuneshift vs the electron beam position presented in Fig.5
(Je =1A Uc =6.0 kV) at the �better WP� of
Qx,Qy=0.583,0.577. One can see that intensity does not go
down smoothly, drops occur while we cross the electron
beam edges. One may associate these with excitation of
non-linear resonances. At very large electron currents we
also detected significant proton emittance blow-up, which
sometime made a good lifetime impossible after that.

On the other hand, if electron and proton beams are
separated by some 5 mm (about 3 times the electron beam
radius ae), than no deterioration of the proton beam
intensity has been observed and the measured lifetime is
about τ0.



 

Figure 7: Proton beam intensity and electron current
during the electron beam steering.

We did not have enough time to study the effect of the
electron beam size and/or electron current density profile
yet. The only indication that relative size matters is that
when the proton emittance is 1.5-2 times larger than
usual, e.g. 40-60π mmmrad (95%) instead of 25π
mmmrad (corresponding to a rms horizontal beam size at
the TEL location of 0.8-0.9 mm instead of typically 0.7
mm � compare with ae =1.75mm), the lifetime becomes
very poor.

4 FUTURE STUDIES, IMPROVEMENTS
 Topics for our further studies include: effects of the
electron beam size and shape on the tuneshift and
lifetime,  emittance growth vs electron beam current and
position stabilization, effects of ions,  TEL operation  with
the Tevatron antiproton beam, and, finally, the TEL
operation with many bunches. The ultimate goal of the
studies is to achieve the same or better beam lifetime with
the TEL at dQ comparable with the Tevatron beam-beam
tune shift and around typical  working  points.

Further studies will require  (in order of urgency):
better electron beam steering, better proton beam
diagnostics, and better quality electron beam. To achieve
more precise steering we are currently working on the
BPM hardware and electronics improvement (the existing
ones gave unreliable readings of the proton bunch
position.

Using �tickling� of the proton orbit with the electron
beam can potentially improve the steering as well. The
idea is similar to the �K-modulation� in the beam based
alignment: variation of  the electron current in the electron
lens should cause variations in the proton beam orbit
around the ring if the electron lens beam  is not centered.
Fig. 8 shows the rms amplitude of the vertical proton
orbit variation at the Tevatron BPM located at  A0 sector
vs vertical displacement of the electron beam at F48
which had  the current modulation of   Je =1.02+

0.18sin(2πt*107Hz) A. The amplitude becomes equal to 0
if the proton beam goes through the center of the electron
beam. The 7 mm distance between the two peaks  reflects
an effective diameter of the electron current distribution,
and, thus, indicates angular misalignment of the electron
beam because it exceeds the electron beam diameter of
about 3.5 mm. Therefore, steering by the orbit tickling
should concentrate not only on the search of the minimum
orbit response, but also on having two maxima closer to
each other.  In the first experiments, such a tickling
measurements took about 2-3 hours, and now we are
looking for a faster automated system.
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 Figure 8: Rms amplitude of vertical proton  orbit
variation vs vertical position of AC electron beam.

We also look forward to having more reliable proton
diagnostics for the emittance measurements (e.g.,
synchrotron light system instead of flying wires) and an
automated   tune measurement system for the multi-bunch
measurements.  R&D on the better electron beam for the
TEL include a wider  beam with smooth edges from  new
10A, 30kV electron gun pulsed by 100ns solid-state HV
FID-pulser [6], a better stabilization of the beam current
and position, and a better control system

                5 CONCLUSION
We have experimentally demonstrated feasibility and

operation of an electron lens. Experimental studies of the
beam-beam effects in the electron-proton collisions have
been performed and shown a decent agreement with
theory.  We will continue our studies  on the beam-beam
compensation with TELs. We found no �show-stoppers�
yet, and we know what we have to do on each of the
problems. Our studies with the 1st TEL should
demonstrate that the electron lens does not deteriorate
luminosity lifetime of the Tevatron. After the
demonstration we will start fabrication of the 2nd TEL
which will be installed at A10 sector of the Tevatron. The
2nd lens will complete the system for linear beam-beam



compensation which is supposed to  start working
routinely already in the Tevatron Run IIa (approximately
at the end of 2003 � early 2004). The next step would be
to study compensation of  non-linear beam-beam effects.
For that we will develop electron lenses with non-uniform
(close to Gaussian) transverse electron current profile. If
successful, the non-linear BBC can allow substantial
increase of the collider luminosity. The increase may
double  if the non-linear BBC will allow to get rid of
some 200 µrad crossing angle at the Tevatron interaction
points that is going to be introduced as soon as the
Tevatron collider starts operation with 3 times shorter
bunch spacing in the Run IIb (namely, 132 ns).

Besides linear and non-linear BBC, electron lenses - a
novel type of accelerator element - can be used for
cleaning, dumping  and shaping high-energy beams, for
space-charge compensation in low-energy proton boosters
[9], for selective slow extraction from particular bunches

[10], for increasing transverse impedance and TMCI
studies.

We sincerely thank all the people who contributed to
the TEL design, fabrication, commissioning, and
operation.
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ANALYTICAL STUDY AND TRACKING SIMULATIONS OF THE
BEAM-BEAM COMPENSATION AT TEVATRON

Y.Alexahin, V.Shiltsev, FNAL, Batavia, IL 60510,
D.Shatilov, BINP, Novosibirsk, Russia

Abstract
     Compensation the beam-beam effect with
the help of electron lenses [1] is considered,
that includes elimination of thep bunch-to-
bunch tunespread due to the PACMAN effect
(linear beam-beam compensation) and
compression of the intrabunch nonlinear
beam-beam tunespread (nonlinear
compensation). It is shown that the influence
of adverse side-effects of such compensation
(excitation by the electron beams of the high
order resonances remaining within the
residual tunespread, reduction in the
stabilizing tune dependence on amplitudes)
can be minimized by an appropriate choice of
the electron beam configuration and the
working point in the tune diagram.
Compression of the beam-beam tunespread
by a factor of two is shown to be feasible.

1  INTRODUCTION
Owing to a number of reasons - a larger
number of protons per bunch and a smaller
proton emittance, a factor of seven larger
number of the parasitic long-range
interactions (see Table 1) - the beam-beam
driven resonances (the synchro-betatron ones
in particular) can present in the Tevatron Run
IIa configuration [2] a greater danger for
stability of antiprotons [3] than previously.
     Another complication associated with the parasitic
interactions is the so-called PACMAN effect: dependence
of the tuneshifts on the bunch position in a train as
illustrated by Fig.1a which shows the distribution of
antiprotons in the tune diagram with the traditional for
Tevatron choice of the bare lattice tunes, νx0 = 20.585,
νy0 = 20.575. Each of the 12 bunches in a train is
represented by 3000 particles, tunes were calculated
analytically using formulae of Ref.[3].
     As can be seen from Fig.1a it is impossible to
accommodate   all   particles   in   the   area   free   of   the

        Table 1. Parameters for different Tevatron runs.

resonances of the order lower than 13 which are shown
with red and blue lines for the sum and difference
resonances respectively.
      The beam-beam tuneshift can be compensated with
the help of electron lenses [1]. Two linear lenses created
by electron beams of constant charge density can
completely eliminate the bunch-to-bunch tunespread
(linear beam-beam compensation), by choosing a bell-like
shape it is possible to reduce the intrabunch nonlinear
tunespread as well (nonlinear compensation). The
question arises whether this will really improve the
stability of antiprotons since the electron beams
themselves may contribute to excitation of high order
resonances remaining within the residual tunespread.

2  LINEAR COMPENSATION
Round electron beam of constant charge density acts as a
linear lens on the antiprotons with amplitudes smaller
than its radius ae producing negative tuneshift in both
transverse planes in proportion to the corresponding
betatron function:

Run Ib Run IIa Run IIb
Np /bunch,               1011 2.32 2.7 2.7
εp (95% norm.), π⋅µm⋅rad 23 20 20
ξ /nominal IP 0.0074 0.01 0.01
N parasitic IPs 10 70 278
ξ, total ~ 0.015 ~ 0.025 ~ 0.025
εpbar (95% norm), π⋅µm⋅rad 13 15 15

b

dc

a

Figure 1: Antiproton beam footprint in the betatron tunes plane with:
a � no BBC, b � linear BBC with 1 Tevatron electron lens (TEL),
c � linear BBC with 2 TELs, d � nonlinear BBC with 2 TELs
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where Ie, Le and βe = ve/c are respectively the electron
beam current, length and velocity.
     By modulation of the current in one electron lens
(TEL1) placed at a location where βx >>βy it is possible to
equalize the horizontal tuneshift in all bunches without
increasing the bunch-to-bunch vertical tunespread. Circles
with violet fill in Fig.2 show what current the antiproton
bunches should see in order to have equal horizontal
tuneshift for small amplitude particles in the case of
electron beam with ae = 1.8 mm, βe = 0.2, Le = 2 m at
location where βx = 98.7 m, βy = 28.4 m.  The resultant
distribution in tunes (after some trimming of the bare
lattice tunes as well) is shown in Fig.1b.
     Adding a second electron lens (TEL2) at a location
where βx << βy permits to equalize both horizontal and
vertical tuneshifts. The electron currents which are
needed in this case are shown in Fig.2 by circles with blue
and red fill. The radius of the second beam is
ae = 2.35 mm, at its location βx = 56.7 m, βy = 172 m. The
resultant tunespread is shown in Fig.1c.

2.1 Numerical simulations
     Though the electron beam radii were chosen
sufficiently large (more than 3σpbar) the stability of tail
particles which see the sharp edges of the electron beams
is not guaranteed. Effect of the electron beam size and
profile was a subject of extensive numerical simulations
with the LIFETRAC code [4]. In these simulations only
one TEL was considered which was located, as planned
initially for the demonstration experiment, in the region
with approximately equal betatron functions.
     A few electron beam density profiles were taken: a
Gaussian and ones described by the formula

nRr
Rrr

)/(1
)/(1)(

0

2
0

0 +
+= αρρ (2)

with ρ0 adjusted so that to keep ∆νx,y = - 0.01 at different
values of parameters α and n. The bare lattice tunes, after
some scanning, were chosen to be νx0 = 20.566,
νy0 = 20.556.
     Tracking with noise showed high sensitivity to and
complicated dependence on the electron beam profile,
however, some general trends can be established.
     Fig.3 shows the relative luminosity reduction after
3⋅106 turns as a function of the electron current for
different space charge distributions. One can see that
smoother the distribution, the lesser the observed drop in
luminosity (i.e. the Gaussian one is the best of the three).
However the total peak electron current required to keep
the luminosity high is approximately the same for all
three distribution functions: about 7A (that corresponds to
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R0 ~ 3σpbar).
     A number of other issues were addressed in the
simulations with one TEL: effect of the e-beam
misalignment (meanders and offsets) and noise as well as
the transient effect while aligning the e-beam with the
orbit of antiprotons. The results can be briefly
summarized as follows:
• Stationary offsets of up to 0.2 R0 are tolerable.
• Meandering of the electron beam around thep orbit
with amplitude of 0.25 R0 produce no harmful effect; this
opens a possibility to vary the e-beam effective aspect
ratio by deliberately bending the beam with correctors.
• The process of the electron beam alignment, if started
from large initial offsets (≥R0), destroys the antiproton
beam. Therefore it has to be done in a few steps, each
time with a new p bunch and/or using initially lower
electron beam current.
• The p-beam emittance dilution due to random turn-
by-turn fluctuations in the e-beam position and current is
found to be in a good agreement with the previous
analytical estimates [1], for example, the relative current
fluctuation of 2.2⋅10-3 gives 10 hrs growth time.

3  NONLINEAR COMPENSATION
There are several disadvantages inherent to the linear
beam-beam compensation (BBC):
• the intrabunch nonlinear tunespread is much larger
than the bunch-to-bunch tunespread being compensated;
therefore it is still difficult to accommodate the total
footprint in a resonance free area;
• there is strong excitation of high order resonances for
antiprotons with large betatron amplitudes which see the
steep edges of the electron beam;
• the electron beam current, owing to a large beam
radius, should be high (≥6A) easily reaching the
electrostatic limit in the Tevatron beam pipe [1]; a high-
current electron beam may also produce an unwanted
effect on the protons.
    These problems can be simultaneously solved by
shaping the electron beam in the gun with a Pierce-like

electrode [5] (a �profiler�) so that it had a smaller r.m.s.
size and smoother edges as shown in Fig.4 with the solid
blue line.
3.1  Footprint compression
     With the electron and antiproton beam sizes becoming
comparable, the tuneshift produced by the electron lens
acquires the amplitude dependence which is similar to
that of the tuneshift from the head-on collisions with the
proton beam. In the result the total tunespread within a
single antiproton bunch can be compensated to the extent
determined by the contribution of the long-range
interactions.
     Obviously, to benefit from such compensation one
should eliminate the bunch-to-bunch tunespread first, so
again two electron lenses are necessary. We assume them
to be at locations with the betatron function values cited
in the previous section and to have the HWHM sizes
re = 1 mm in TEL1 and re = 1.3 mm in TEL2. The
electron currents that provide a complete compensation of
the bunch-to-bunch tunespread and compress the intra-
bunch nonlinear tunespread by a factor of two are shown
in Fig.5. Due to smaller e-beam sizes they are twice lower
than those needed for the linear BBC.
    The effect of TELs on the total tunespread is shown in
Fig.1d; compensation of the nonlinear tunespread in a
particular bunch is illustrated by Fig. 6. It shows the
antiproton bunch #6 footprint in the tune diagram without
BBC (black) and with it (teal blue). The bare lattice tunes
(assumed nominally to be νx = 20.585, νy = 20.575) were
slightly trimmed in the latter case. The arc lines
correspond to equidistant with step 2 values of the total
transverse amplitude

22
yx aaa +=⊥

, (3)

where ax,y are taken in the p r.m.s. sizes, the radial lines
correspond to constant values of ax/ay.
      It can be seen that the footprint �folding�, which is
caused by the long-range interactions with the proton
beam and without BBC happens at amplitudes ~8σ, with
BBC takes place at amplitudes as low as 5σ.  Since even
very weak high order resonances may lead to a fast

Figure 6: Original and compressed antiproton bunch #6
footprint in the vicinity of the standard working point.

ay

νx +11νy

12νy

ax

Figure 7: Swing of the betatron amplitudes due to
resonances encountered by particle of bunch #6 at
the nominal working point with BBC.



particle transport over the region of folding thus reducing
the particle lifetime, this effect sets a natural limit on the
degree of the footprint compression.
     Another limitation comes from the requirement that
the tune modulation by the synchrotron motion due to
finite dispersion at the TEL locations was small:
re>>DxσE ≈1.7m×9⋅10-5 ≈0.15mm, to avoid strong
excitation of the synchrotron satellites of betatron
resonances.
3.2 Resonance excitation
     The electron beams of TELs can themselves contribute
to excitation of resonances. Fig.7 shows beatings of the
betatron amplitudes (calculated analytically in a single
resonance approximation) due to resonances encountered
by antiprotons of bunch #6 whose footprint with BBC
was shown in Fig.6 in teal blue.
     Due to the TEL contribution the width of the 12νy
resonance is much larger than that of the νx+11νy
resonance which, in the absence of misalignments, is
excited exclusively by the long-range interactions.
    For off-momentum particles the effective resonance
width is even larger owing to the synchrotron satellites.
3.2.1  Choice of the working point
     The compressed with TELs footprint can fit into other
areas in the tune diagram which are surrounded by less
dangerous resonances. One such possibility, with the

tunes around νx =20.563, νy =20.557, was considered for
the linear BBC [4]. However, this area is not wide enough
to avoid setting some particles on either 7th or 9th order
resonances.  Another option is the SPS working point [6].
The compressed with TELs footprint at the bare lattice
tunes νx = 20.689, νy = 20.682 (which we refer to as the
SPS WP) is shown in Fig.8.
3.2.2  Effect of the electron beam profile
     Excitation of the 16th order resonances (and its
satellites) by TELs can facilitate diffusion of antiprotons,
especially in the region of amplitudes where the footprint
folding occurs. As the example of 10νx+6νy resonance
shows (Fig.9), excitation of high order resonances by
TELs can be reduced by making the e-beam charge
distribution more monotonous (e.g. Gaussian). One more
advantage is that the footprint folding occurs at somewhat
larger amplitudes with the Gaussian e-beams (compare
the compressed footprints in Figs.6 and 8).
     Analytical calculation of the beatings of the betatron
amplitudes at the SPS working point in the case of
Gaussian e-beams predicts only moderate effect of the
difference resonance 3νx- 6νy on the tail particles
(Fig.10).
3.2.3  Effect of the number of TELs
     There is an additional argument (besides compensation
of the PACMAN effect) in favor of using two TELs at
points with βx >>βy and βx << βy rather than one TEL at a
location with equal β�s. From the resonances excited by
TELs the high-order sum resonances are the most
dangerous (the WP can always be chosen so that the uni-
dimensional ones were reached at too small amplitudes to
be noticeable or not reached at all). Since the driving term
of the kνx+lνy = n resonance contains the factor βx

k/2βy
l/2,

its excitation is significantly suppressed in the case of two
TELs, as illustrated by Fig.9 (curves 2,3). In all cases
TELs provided the same horizontal tuneshift ∆νx = -0.014.
3.2.4  Effect of the finite dispersion
    Owing to the finite dispersion TELs can contribute to
excitation   of   the  synchro-betatron   resonances  (SBRs)

Figure 8: Bunch #6 footprint at the SPS WP with
BBC by two Gaussian TELs
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Figure 9: The10νx+6νy resonance driving term for ax =
ay = a⊥/21/2: 1 � 2 TELs with flat-top e-beam (Fig.4,
curve 2), 2 - 2 TELs with Gaussian e-beam, 3 � 1 TEL
with Gaussian e-beam at location with βx = βy.

Figure 10: Swing of the betatron amplitudes due to
resonances at the SPS WP with BBC by two
Gaussian TELs.
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two-fold: via the tune modulation arising from the steep
fall-off of the instantaneous tuneshift with the
displacement Dxδp, and via variation of the nonlinear
component of the TEL field seen by an antiproton in the
course of the synchrotron motion.
    According to the estimates the second effect should not
be important, whereas the first one, the TEL second
order chromaticity, is big: TEL tuneshift is modulated by
more than 20% at as = 3. Both effects can be reduced, if
necessary, by increasing the e-beam radius.
3.3 Numerical simulations
     All the above presented results were obtained in the
single resonance approximation using analytical formulae
of Ref.[3]. More realistic picture can be obtained by
tracking simulations with the code LIFETRAC which can
take into account the cooperative action all beam-beam
and TEL nonlinearities and the external noise.
     Fig.11 shows evolution of the bunch #6 density at the
SPS WP with the BBC by two Gaussian TELs which
provide zero-amplitude tuneshifts of ∆νx

e ≈ -0.0144,
∆νy

e ≈ -0.0115. With the bare lattice tunes 20.689, 20.682
the 13th order resonances proved to be strong enough to
affect the core particles (left column). With tunes shifted
down by 0.005 (center column) the core was not affected,
still some tails had developed which were not seen in the
test run with linear lenses instead of TELs. Weakening
the TELs nonlinearity by a 15% increase in the e-beam
sizes diminishes the tails (right column). In all three cases
neither luminosity nor lifetime had suffered.

4  CONCLUSIONS
• With the help of two electron lenses it is possible to
completely compensate the bunch-to-bunch tunespread
(PACMAN effect) and partially reduce the intrabunch
nonlinear tunespread.
• The degree of nonlinear BBC is limited by the
footprint �folding� due to the long-range contribution and
the electron lens chromaticity due to finite dispersion.

• The possibility to eliminate the footprint folding by
additional compensation of the long-range interactions
(e.g. with pulsed wires) should be studied.
• Excitation of high order resonances by TELs can be
reduced by choosing a smooth electron beam charge
distribution (e.g. Gaussian) and using two TELs at points
with strongly unbalanced β-functions.
• Compression of the footprint by a factor of two
permits to fit it in the areas free of resonances of orders
lower than 13, the neighborhood of the SPS working
point being a promising candidate.
• Compensation of the beam-beam effect appears to be
a viable method to achieve and surpass the Run II design
goals.
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CORRECTION OF THE  LONG-RANGE BEAM-BEAM  EFFECT IN  LHC
USING ELECTRO-MAGNETIC LENSES

J.P. Koutchouk, CERN, Geneva, Switzerland
Abstract

The beams in LHC collide head-on in at most four experi-
mental points. Due to the small bunch spacing, the beams
experience more than one hundred ‘near-misses’ on either
side of the collision points. The transverse beam separa-
tion at these places, limited by the quadrupole aperture, is
in the range of 7 to 13σ. The non-linear part of these ‘long-
range’ interactions appears to be the dominant mechanism
for beam blow-up or beam loss in simulation. A simple
non-linear model of the long-range interactions can be de-
vised. It shows that the latter may be locally corrected with
good accuracy using wires as correcting lenses. The non-
linearity measured by the tune footprint is reduced by one
order of magnitude. Pulsing the correcting lenses cancels
the so-called PACMAN effect.

1 THE LONG-RANGE BEAM-BEAM
INTERACTIONS IN LHC
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Figure 1: Beam separation in the crossing angle
(±150 µrad) plane of IP1 in σ’s

With a 25 ns bunch spacing, there would be 31 head-
on collisions per experimental insertion in the absence of
the ±150 µrad crossing angle. The aperture of the single-
bore low-β quadrupoles does not allow to increase it much
above its nominal value. In the high-luminosity proton
mode, the beam size is squeezed in two of the four collision
points (IP1 and IP5). The larger beam divergence sets the
normalized beam separation to 9.5σ on average (Figure 1).
In the other two collision points, the normalized separation

is much larger. Their contribution to the long-range (LR)
beam-beam effect can be neglected.

The machine parameters were chosen to limit to 0.01 the
tune spread due to the beam-beam effect. This criterion,
successfully tested in the Spp̄S for the head-on beam-beam
effect, is extended, for LHC to its LR component as well.
In spite of the crossing angle, the footprint of the latter is
still 65% of that due to the head-on collision.

Tracking studies using as a criterion the dynamic aper-
ture [1] [2], the diffusion in tune or amplitude [4] [3] [5]
have demonstrated the importance of the LR interactions.
Even-though the footprint criterion is fulfilled, losses of
particles occurs at 8.5σ and a significant diffusion in am-
plitude and tune is observed at lower amplitudes. The LR
effect acts as the dominant destabilizing mechanism.

The alternating crossing angles [6] in IP1 and IP5 min-
imize the tune footprint by a compensation of the linear
detunings. We propose in this paper a correction principle
able to cope with the non-linear part as well.

2 MODEL OF THE LONG-RANGE
BEAM-BEAM KICKS

We consider a slightly simplified model of the LR beam-
beam interactions for the design of the correction system.
The test of its efficiency is carried out without these simpli-
fications. Only one of the two identical insertions is con-
sidered without losing generality. Following the tradition,
the sample particle of one beam is called the weak beam. It
suffers from the perturbation of the second ‘strong’ beam.

2.1 Layout and Strength of the LR Effect

Due to the strong focusing of the low-β quadrupoles, the
15 LR kicks experienced by the weak beam on each side of
an IP are very close in betatron phase. Their average and
rms phase shifts from the IP are 88.5◦ and 2.0◦. For 80%
of the kicks, the rms phase difference is 0.4◦ only. We can
therefore lump the kicks.

The anti-symmetric optics of the low-β section causes
the Twiss parameters to be unchanged when changing si-
multaneously the plane and the side of the IP. Figure 1
shows that the beams are round to within 10% in about 60%
of the cases. The largest aspect ratio is about 1.8 as com-
pared to a beam separation of at least 7 in the same units.
We therefore assume in the model round beams.

The nominal number of particles per bunch is 1.1 1011

for a rms bunch length of 7.7 cm. Assuming a total bunch
length

√
2πσs, the instantaneous beam current is 27.36 A

(43.77 A for the ultimate performance).
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2.2 Model of the Beam Magnetic Field

For ultra-relativistic counter-rotating beams, the forces ex-
erted by the electric and magnetic fields are equal. The
interaction time is half the bunch length. The kick is the
same when integrating the magnetic force only over the full
bunch length. Assuming a Gaussian cylindrical charge dis-
tribution, the expression of the magnetic field is:

Bθ =
µ0

2π
Ib
r

(e−r
2/2σ2

S − 1) (1)

Ib is the beam current, r the distance between the center
of the strong beam and the weak beam, σS the transverse
beam size of the strong beam.

The largest amplitude of the betatron oscillation allowed
by the collimation system is 6σ. In the worst case where
this amplitude is fully in the plane of the beam separation,
the exponential term in Eq. 1 accounts for 4% of the inte-
grated magnetic field over the 30 LR interactions. Averag-
ing over the betatron phase, it is reduced to 1%.

An electric current in a wire is therefore a good model for
the strong beam in the LHC LR interactions. The multipole
expansion of this model magnetic field is given by:

By+iBx =
µ0Ib
2πr0

∞∑
n=1

(− cosnφ−i sinnφ)
(x + iy)n−1

rn−1
0

(2)
where r0 is the closed orbit difference between the beams,
φ the azimuthal angle and x and y the betatron coordinates
of the weak beam. A naive calculation of e.g. the integrated
b10 shows an integral much larger than that due to the low-
β quadrupole field imperfections and may give a clue to the
seriousness of the LR effect.

2.3 Scaling of the LR Perturbation

The perturbation of the motion is proportional to:

∫
lLR

√
βx/y

By/x

Bρ
ds (3)

If r0, x and y scale with the same
√
β, the perturbation does

not depend on the β-function. This is the case for about all
LR encounters in the experimental straight-section (about
50% of the total).

3 LR CORRECTION SCHEME

3.1 Principle of the Correction

The model of the LR beam-beam kicks points clearly to the
possibility of correcting the LR beam-beam effect (linear
and non-linear) by means of an electric current in a con-
ductor running parallel to the weak beam. Assuming such
a corrector on each side of the IP, the integrated intensity
shall be 27.36A ×

√
2π × 7.7cm × 15 ≈ 80 A m with a

sign opposite of that of the strong beam.
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δ E/ p 0c = 0 .

Table name = TWISS
[*10**(  3)]

 lhc version 6.-2  collision optics (thick lens)
HP/UX version 8.22/14 17/02/00  17.34.59

0.0

500.

1000.

1500.

2000.

2500.

3000.

3500.

4000.

4500.

5000.

β
(m

)

31.60

31.65

31.70

31.75

31.80

31.85

31.90

31.95

32.00

32.05

32.10

32.15

32.20

µx
(r

ad
/2

π)β x β yµ x

LRC LRC

✐ ✐

Common section

D1 D1LRC LRC

Figure 2: Twiss parameters in IR5 and schematic positions
of the correctors for a horizontal crossing.

3.2 Transverse Position of the Correctors

The respective transverse positions of the corrector and
weak beam should be the same as that of the strong and
weak beams at the LR interaction points. For a horizontal
crossing, the correctors should be placed between the two
beams. For a vertical crossing, they should be placed above
or below the weak beam. Eq. 3 remains invariant if the
beam-corrector separation r0 scales with the β-function.
Hence the correctors shall be placed at 9.5σ from the weak
beam. This provides an exact correction of the LR interac-
tions occurring in the straight-section and an approximate
one for the others. This approximation is later investigated
numerically. Eq. 3 shows further that any other scaling, i.e.
I versus r0 does not allow the simultaneous compensation
of all linear and non-linear terms. The separation of 9.5σ
puts the corrector in the shadow of the secondary collima-
tor. Figure (2) shows a schematics of the corrector set-up.

3.3 Longitudinal Position of the Correctors

Positions with equal β-functions in the two planes may be
found on the other side of the triplet versus the IP (Fig-
ure 2). At these positions (112m from the IP’s), the beam
separation is almost nominal (≈ 100σ) and sufficient to in-
stall instrumentation acting on a single beam. The betatron
phase shift between these positions and the LR interaction
points is 2.6◦, owing to the very large β-functions. This
small phase shift should guaranty that the phase-dependent
non-linear terms are well compensated (e.g. factors of 5
and 2 for 5th and 11th-order resonances).
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4 NUMERICAL SIMULATIONS

4.1 Model for the Simulation

LHC v6 is used in its full complexity. To allow a faster
evaluation in the MAD tracking, the part of the lattice
which does not include LR interactions or correctors is
mapped at the order 3 in the Hamiltonian. The LR correc-
tor is represented by a beam-beam lens whose beam size is
artificially reduced (σ/100), providing a field in 1/r with
great accuracy. The correctors are positioned on each side
of the IP at a position where the β-functions are the same in
the two planes on the unperturbed machine. They are trans-
versely displaced by 9.5σ. The criteria used to judge on
the efficiency of the correction are: the betatron tunes, the
closed orbit at another collision point and the largest extent
of the tune footprint. The latter is calculated by tracking
a set of initial conditions on circles in the x, y plane with
radii ranging from

√
x2 + y2 = 1σ to 6σ. By symmetry,

there is no orbit perturbation at the IP under consideration.

4.2 Test of the Correction

This artificial example allows an exact correction. Only
the LR interactions occurring in the experimental straight-
section are retained (12 in total) and their strength in-
creased to keep the same integrated kick. Table 1 shows
a practically perfect correction.

Name Qx Qy ∆Q(6σ)
no beam-beam .2800 .3100 .0033 10−3

12 LR’s .2820 .3080 2.2 10−3

after correction .2800 .3100 .0092 10−3

Table 1: Results of the correction test

4.3 A Realistic Correction in IP5

The LR interactions in the quadrupoles are now added. Ta-
ble 2 and Figure 3 show that the compensation is almost
exact for the orbit and reduces the footprint by a factor of
5. If the current in the correctors is empirically increased

Name Qx Qy xIP1 ∆Q(6σ)
µm 10−3

no beam-beam .2800 .3100 0 .0033
All LR’s .2824 .3076 2.6 3.5
Nominal correction .2802 .3098 .09 .65
Optimized correction .2799 .3100 .25 .275

Table 2: Results of a realistic correction in IP5

by 13%, the footprint is further reduced by a factor 2 and
the orbit perturbed in a negligible way. Given the small be-
tatron phase shift between perturbation and correction, the
tune footprint should be a rather faithful image of the other
non-linear terms.
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Figure 3: Tune footprints before and after corrections

4.4 Robustness

Due to the summation of the LR kick over 15 bunches, the
expected 20% bunch intensity spread is reduced to a 5%
effect. The scheme is insensitive to a change of the closed
orbit of the weak beam. The dependence on the exact cor-
rector current appears non critical (Table 2).

5 CONCLUSION

We show that the long-range beam-beam interactions,
presently considered as the most drastic limitation of LHC
performance, can be rather accurately corrected for both
their linear and non-linear perturbations. The principle of
the corrector is simple and considered challenging but fea-
sible by the experts. A dc operation of the correctors com-
pensates the LR effect for nominal bunches. The so-called
PACMAN bunches can be taken care off by pulsing the sys-
tem at 1/15 of the bunch frequency.
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Weak-Strong Simulation Studies for the LHC Long-Range Beam-Beam
Compensation

F. Zimmermann, CERN, Geneva, Switzerland

Abstract

Using weak-strong computer simulations, we study the
improvement of LHC tune footprints and dynamic aper-
ture by electromagnetic lenses, i.e., pulsed wires, which
compensate for the long-range beam-beam interaction. In
particular, we explore the robustness of this compensation
scheme to linear optics imperfections as well as to errors in
wire strength and position.

1 INTRODUCTION

The long-range or parasitic collisions are expected to
limit the dynamic aperture of the LHC [1, 2, 3]. A com-
pensation scheme for the effect of the long-range collisions,
proposed by J.-P. Koutchouk, is presently under investiga-
tion at CERN [4, 5, 6]. The compensation employs an elec-
tric wire on each side of each interaction point (IP). The
wire carries an integrated current of about 80 Ampere me-
ter, and it is placed at a horizontal or vertical distance from
the beam that equals the effective beam-beam separation at
the long-range encounters, about 9.5σ at top energy. If the
current is pulsed or ramped at the start of each bunch train
the correction can work even for the so-called PACMAN
bunches [7], i.e., for bunches which do not experience the
full set of long-range encounters, due to gaps in the oppos-
ing beam.

In this report, we report weak-strong simulation results
for the wire compensation scheme. The simulation pro-
gram is the same as described in Ref. [2], except that two
electric wires have been added. Considering two head-on
collisions with alternating crossing and the parasitic colli-
sions around each head-on IP, the simulation yields the tune
footprints and the action diffusion rate at various betatron
amplitudes. Using this simulation, we study the sensitivity
of the wire compensation to various errors, such as to er-
rors in the wire position, the wire strength, or the betatron
phase advance between the wire and the collision point.

Section 2 describes the simulation model in more detail.
Results are presented in Section 3. Conclusions are drawn
in Section 4.

2 MODEL

The simulation study follows John Irwin’s approach for
the SSC [2, 8]. It is a 4-dimensional code, without syn-
chrotron oscillations. However, tune modulation can be in-
cluded as an option.

We consider two IPs, one with horizontal crossing, the
other with vertical. This models the two main IPs in the

Table 1: Parameters.
parameter symbol value
number of particles per bunch Nb 1.1× 1011

beam energy Eb 7 TeV
rms beam size at IP σ∗

x,y 16µm
rms divergence at IP θ∗x,y 31.7 µrad
IP beta function β∗

x,y 50 cm
full crossing angle θc 300 µrad
number of main collision points nIP 2
parasitic collisions per side npar 16
bunch spacing Lsep 7.48 m
beam-beam parameter ξ 0.00342
revolution frequency frev 11.25 kHz

LHC. Simulation parameters are summarized in Table 1.
At the parasitic collision points the beams are separated by
θc/θ

∗
x,y ≈ 9.5 rms beam sizes. The fractional tunes are

set to the LHC design values of 0.31 and 0.32. The phase
advance between IPs is taken to be exactly half the total
phase advance per turn.

At each IP we apply a series of 3 kicks representing, re-
spectively,

• the lumped effect of long-range collisions and wire
compensation on the incoming side,

• a head-on collision,

• the lumped effect of long-range collisions and wire
compensation on the outgoing side.

2.1 Head-On Collision

The head-on collision with a round Gaussian beam is
parametrized as

∆x′ =
2rpNb

γ

x

r2

(
1− e−

r2

2σ∗ 2

)
(1)

∆y′ =
2rpNb

γ

y

r2

(
1− e−

r2

2σ∗ 2

)
(2)

where σ∗ ≡ σx = σy; r =
√
x2 + y2 is the radial distance

to the origin, rp the classical proton radius, γ the Lorentz
factor, and Nb the bunch population. The phase-space co-
ordinates x, x′, y, and y′ refer to the IP.

2.2 Long-Range Interactions

All parasitic collisions (npar) on one side of the IP are
lumped into a single deflection. Assuming a perfect π/2
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distance in phase advance between head-on and parasitic
collision points, the kick is approximately expressed as a
change in the IP coordinate (while the IP angle stays un-
changed). For the IP with horizontal crossing, the IP coor-
dinates and slopes are changed according to

∆x = npar
2rpNb

γ

[
x′ + θc
θ2
t

(
1− e−

θ2
t

2θ∗2

)

− 1
θc

(
1− e−

θ2
c

2θ∗2

)]
(3)

∆y = npar
2rpNb

γ

y′

θ2
t

(
1− e−

θ2
t

2θ∗2

)
(4)

where
θt ≡

(
(x′ + θc)2 + y′2

)1/2
(5)

and θ∗ ≡ θ∗x = θ∗y is the rms IP beam divergence. At the
LHC, the effective number of parasitic crossings per side
is npar ≈ 16. The expression for the kick is the same on
both sides of the IP. The second IP, with vertical crossing,
is treated analogously.

2.3 Wire Compensation

The new feature of the code is the electric wire. For a
horizontal crossing, the effect of a thin wire is represented
as:

∆x =
µ0Iwlw
2π(Bρ)

[
x′ + θc,w ± φxx/β

∗
x

θ2
tw

− 1
θc,w

]
(6)

∆x′ = −(±1)φx ∆x/β∗
x

∆y =
µ0Iwlw
2π(Bρ)

y′ ± φyy/β
∗
y

θ2
tw

∆y′ = −(±1)φy ∆y/β∗
y

where

θtw ≡
(
(x′ + θc,w ± φxx/β

∗
x)2 + (y ± φyy/β

∗
y)2

)1/2
,

(7)
and lw is the length of the wire, θc,w is the angle at the IP
representing the transverse distance between the beam and
the wire, Iw the wire current, and (Bρ) the magnetic rigid-
ity of the beam. The± signs refer to the two sides of the IP.
Again the vertical crossing is treated in analogy. The errors
φx and φy represent the deviation in phase advance from
the IP with respect to the ideal value π/2. Simultanously
they also give the differences in phase advance from the
location of the long-range collisions. At the wire location
presently contemplated, the phase errors are about 2–3 ◦ in
the design optics [4]. For perfect compensation, the wire
current must be chosen as

Iw = −4π(Bρ)Nbrpnpar/(µ0γlw). (8)

The ideal distance between wire and beam is dw ≈
(θc/θ∗x,y)σ, where σ denotes the rms beam size at the wire.
This corresponds to θc,w = θc.

Figure 1: Tune footprints for various cases, for initial hori-
zontal and vertical amplitudes extending to 7σx,y. Top left:
head-on collisions only; top right: head-on plus long-range
collisions; bottom left: head-on plus long-range collisions
and a perfect wire; bottom right: head-on plus long-range
collisions and a wire with 20% strength error.

2.4 Compensation Errors

We consider five types of errors, namely,

• a simultaneous symmetric betatron phase error φx,y
on both sides of each IP,

• a static wire strength error,

• a random wire strength error,

• a wire position error,

• a betatron phase error φx,y with only one wire per IP.

Simulation results for each case are discussed next.

3 RESULTS

Figure 1 shows tune footprints computed for initial am-
plitudes extending to 7σx,y. The tunes were calculated by
applying a fast Fourier transform to particle positions sam-
pled over 4096 turns. The top left picture shows the tune
footprint for the two head-on collisions alone, the top right
the enhancement of the footprint by the long-range colli-
sions. The bottom left picture demonstrates that an ideal
wire reduces the footprint to a size equal to or even smaller
than that for head-on collisions only. The compensation
still works even with a significant static strength error, as
illustrated in the last picture.

Diffusion rates are calculated by launching groups of
100 particles at identical start amplitudes in the horizon-
tal and vertical plane, but with random initial betatron
phase. The spread in linear action values is averaged over
1000 consecutive turns to reduce fluctuations due to regular
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Figure 2: The diffusion per turn as a function of the start
amplitude. Different cases are compared.

phase deformations, and to more clearly pronounce chaotic
behavior. The mean increase per turn in the action variance
measures the strength of the diffusion.

Figure 2 shows the simulated diffusion rates as a func-
tion of start amplitude. The vertical axis is on a logarith-
mic scale. It represents the increase in the action variance
per turn, in units of the rms design emittance. Any value
larger than 10−8 could indicate a significant diffusion over
108 turns. It is most noteworthy, that at an amplitude of
about 6σ the diffusion rate increases by 7–9 orders of mag-
nitude, if long-range collisions are present (the red curve,
squares). The strong diffusion is absent when only head-on
collisions are accounted for (the blue curve, circles). This
is consistent with the results of Ref. [2]. When the elec-
tric compensating wire is added (green curve, upright trian-
gles), the amplitude of the steep increase moves outwards
by 1.5–2σ, to about 7.5–8σ. This remarkable improvement
confirms the efficiency of the wire. Even with an imperfect
wire (2◦ phase error - the pink curve, inverse triangles), the
diffusion rates in the intermediate amplitude range 6–8σ
is still several orders of magnitude lower than without the
wire. Note that a 2σ improvement of the dynamic aperture,
in both planes, might greatly improve the operating margin
of the LHC.

That the wire compensation fails for amplitudes larger
than 8σ is understandable. At amplitudes above 8σ the par-
ticles start passing through the core of the opposing beam,
where the beam force strongly deviates from the 1/r force
of the wire.

Figure 3 shows a more systematic study of the effect of
a phase error. The same phase error with respect to the
head-on collision point was assumed for the wires on either
side of the IP and in both planes. Results are compared for
three different amplitudes. Since, for phase errors of about
±10◦, the diffusion rate at 7.5σ increases to the uncompen-
sated level, we may consider this value as the phase toler-
ance. In practice, the phase errors are confined to less than
2 ± 1◦ [4], i.e., phase errors due to optical imperfections
will have a negligible effect on the beam-beam compensa-

Figure 3: Variation of diffusion rate with symmetric beta-
tron phase error at various amplitudes. The phase errors
for the wires on either side and for the two planes are all
assumed to be equal.

Figure 4: Variation of diffusion rate with betatron phase
error at various amplitudes, if there is a compensating wire
only on one side of each IP.

tion.
Alternatively, we consider the case that there is only one

wire per IP and study the sensitivity to betatron phase errors
in this configuration. The results are shown in Fig. 4. They
are similar to, or even lower than, those in Fig. 3, despite
of the reduced symmetry. Since it is not possible to choose
a location with a phase error less than 1◦ also here we take
±10◦ as the tolerance. The differences in the diffusion rates
for one and two wires depend on the working point.

If the wire current is not perfect, the compensation de-
grades. This is studied in Fig. 5 (again for two wires per
IP), depicting diffusion rates at 6.5, 7 and 7.5 σ as a func-
tion of the wire strength error in percent. Especially at the
largest amplitude, the dependence is rather erratic, presum-
ably indicating the existence of resonance islands. Static
strength errors in the range between 0 and −10% appear
acceptable.

The effect of a random change in the wire strength from
turn to turn is illustrated in Figs. 6 and 7. The strength of
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Figure 5: Variation of diffusion rate with static wire
strength error (in units of percent) at various amplitudes.

each wire is assumed to fluctuate from turn to turn. Plot-
ted along the horizontal axis is the normalized peak value
∆Iw/Iw of the random fluctuation in wire current. The lat-
ter is uniformly distributed between−∆Iw and ∆Iw. Then
the diffusion rates should be symmetric around zero, and
deviations from the mirror symmetry reflect the uncertainty
of the simulation result, due to the choice of random seed.

In the simulation of Fig. 6, we have assumed that the
fluctuation in wire strength does not give rise to dipolar
deflections. This means, that in Eq. (6) all three terms con-
taining the factor θc,w were varied simultaneously. For the
corresponding results in Fig. 7, only the average dipole de-
flection, i.e., not including the fluctuating part, was sub-
tracted from the wire force. In this case, the beam expe-
riences random dipole kicks in addition to fluctuating fo-
cusing forces, and higher order terms. Since no fast orbit
feedback is foreseen for the LHC at top energy the second
simulation is more realistic. The difference in the com-
puted diffusion rates is small, however, which suggests that
the random quadrupolar excitation is more harmful than the
dipolar one. Both figures indicate that the tolerance on the
turn-to-turn stability of the wire is less than 0.1%.

Finally, Fig. 8 shows simulated diffusion rates as a func-
tion of an error in the transverse distance between beam
and wire. We observe that errors in the wire position to-
wards larger amplitudes are preferred, presumably because
the 1/r field increases strongly in the vicinity of the thin
wire. Note that the sharp increase in the diffusion rates for
smaller distances is consistent with the steep rise at an am-
plitude of 7.5σ, in Fig. 2, and that the preservation of a low
diffusion rate for distances 10–20% larger than nominal is
compatible with the dependence on the static strength error
in Fig. 5. We deduce from Fig. 8 that the tolerable range of
distances extends approximately between 0 and 20% of the
optimum distance.

In LHC operation, the relative distance of beam and wire
can be determined with sufficient precision by detecting the
effect of the wire current on the closed orbit.

Figure 6: Variation of diffusion rate with peak value of
turn-to-turn random wire strength error at various ampli-
tudes. The dipolar deflection by the wire is subtracted in-
cluding its fluctuation.
.

Figure 7: Variation of diffusion rate with random wire
strength error at various amplitudes. The average dipole
deflection is subtracted.
.

Figure 8: Variation of diffusion rate with wire position er-
ror at various amplitudes. Zero on the horizontal axis refers
to a beam-wire distance of (θc/θ∗x,y)σ ≈ 9.5σ.
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4 CONCLUSIONS

Weak-strong simulation studies show that at amplitudes
between 6 and 8σ the wire compensation reduces the dif-
fusion rate by many orders of magnitude. The tolerance to
betatron phase errors is about 10◦. The tolerable range of
static strength errors extends between 0 and−10%. Trans-
verse distance errors between 0 and 20% are acceptable.
The most critical tolerance appears to be that to turn-to-
turn fluctuation of the wire strength. Here a stability better
than 0.1% must be achieved.

5 ACKNOWLEDGEMENTS
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Summary of session on beam-beam compensation schemes

W. Herr CERN, SL Division

Abstract

This paper summarizes the presentations and discussions
in the session on beam-beam compensation held during the
workshop on beam-beam effects at Fermilab on 25 to 27
June 2001. The presentations and discussion were focused
on two main topics: linear and non-linear compensation
with electron lenses in the Tevatron and a compensation
scheme for long-range effects in the LHC using a pulsed
wire.

1 INTRODUCTION

In high luminosity hadron colliders the beam-beam ef-
fect eventually limits the bunch intensities. Recently
schemes have been proposed to compensate part of the
detrimental effects. During this session three presentation
were made:

• Correction of the long-range beam-beam effect in
LHC using electromagnetic lenses; by J.P. Koutchouk,
CERN

• Simulation of the LHC long-range compensation; by
F. Zimmermann, CERN

• Study of the Tevatron compensation; by D. Shatilov,
BINP

The presentations were discussed and some issues of gen-
eral interest for beam-beam compensation that were raised
during this session are presented here.

2 COMPENSATION OF LONG-RANGE
EFFECTS

Recently the long-range beam-beam effects have been
more and more recognized as important factors for the sta-
bility of the beams in lepton and hadron colliders. Both,
active or passive compensation of at least part of these ef-
fects may be essential for machines with many bunches.

2.1 Pulsed wire for compensation of long range
effects

The proposal to compensate the long-range beam-beam
effects (LRE) was made after initial tracking studies have
shown the importance of long-range effects on the dynamic
aperture. It was realized that for large enough beam sepa-
ration the long range forces decrease with 1

r , where r is
the distance between the beams. Such a field can also be

produced by a thin wire. For the bulk of the long-range
encounters this assumption is valid and the separation is
typically between 7 and 10 σ. Furthermore, most of these
encounters happen where the beams are still approximately
round and at a phase advance of π

2 from the collision point.
It can therefore be justified to lump all interactions into
a single one. The linear part of the long range forces
is largely compensated by the alternating crossings in the
LHC interaction points. The size of the beam-beam tune-
spread (footprint) can be strongly decreased [1] by a wire
running along the beam. The current times length of such
a wire requires approximately 80A · 1m. The size of the
footprint can be decreased by a factor 10. Effects on the
closed orbit are corrected simultaneously.

The bunch filling scheme of the LHC causes a difficulty,
producing so-called PACMAN bunches which experience
only part of the beam-beam effect and therefore need only
part of the correction. To account for this it is proposed to
pulse the current in the wire at the beginning and end of
a batch, i.e. produce smaller compensating fields for the
PACMAN bunches.

Preliminary considerations have shown that such a
scheme is technically possible, using commercially avail-
able equipment.

The wire is operated in the vacuum of the machine and
therefore needs a cooling system. Such a cooling is techni-
cally difficult for a wire of 1 mm diameter and alternatives
have been proposed where a much thicker wire with cool-
ing inside is used and the surface of the wire is shaped to
obtain the correct 1

r dependence.

2.2 Simulation of long range compensation
with pulsed wire

To evaluate the above compensation scheme, a study was
launched to simulate the effect on the beam. A second
aim was to work out the tolerances and the sensitivity of
the proposed setup to imperfections. For that purpose a
weak-strong simulation was developed, assuming a linear
transport in the arcs and at the interaction point a head-on
collision and on both sides long-range collisions together
with a wire. The wire was assumed at a distance of 9.5 σ
and producing a 1

r force. The tests were made on possi-
ble betatron phase errors, as well as on wire positioning
and strength errors. For the evaluation the footprints and
the diffusion rate was used. Without errors the footprints
were reduced almost to the size of the head-on footprints
alone since the compensation in the program is almost per-
fect. Already in earlier studies it was shown that the dif-
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fusion rate increases steeply for particle amplitudes above
6σ (witout wire). With a wire the increase of the diffu-
sion sets in about 1.5 to 2 σ later, i.e. a significant increase
of the available stable region. With phase errors of 2o to
the wire, the improvement is still 1 to 1.5 σ. Only for er-
rors larger that 10o the original steep increased is observed
again. However such phase errors are not expected for a
reasonably well behaved insertion optics. Studying the ef-
fect of static wire strength errors it was found that errors in
the range [-40%, +20%] still give a good correction.

The positioning of the wire with respect to the beam is
an important issue that may need some further thoughts, a
consensus reached during the discussion. The simulation
of positioning errors in the range [-40%, +60%] showed a
dependence with acceptable compensation in the interval
[-5%, +40%]. I.e. in case of positioning errors, an er-
ror away from the beam is preferable. While studying a
scheme with a single wire compensating the long-range ef-
fects from both sides of the interaction point, it was shown
that a scheme with two separate wires has advantages.

During the discussion it was agreed that no obstacle was
identified up to now and the participants of the workshop
strongly recommend to continue with this scheme.

3 STUDY OF TEVATRON
COMPENSATION

Another simulation study aimed to evaluate the linear
and non-linear compensation with electron lenses in the
Tevatron, and possibly to define some strategies for the op-
eration. For that purpose a weak-strong beam-beam code
was developed (LIFETRAC) for the Tevatron that is fully
symplectic in 6D and can use various noise sources, such as
tune modulation or beam separation at the collision point.

The main purpose of the linear beam-beam compensa-
tion is to suppress the bunch-to-bunch tune spread in the
Tevatron. In a first step, good and bad working points
are determined with the program. In the second step all
bunches at bad working points are moved to the good work-
ing points with linear electron lenses. varying the parame-
ters of the lenses and including perturbations this strategy
can be tested. After the application of the linear lenses,
the distributions of antiprotons at originally bad working
points are practically the same as on good working points.
Different electron lens profiles were investigated, studying
the antiproton tune-shift and the luminosity. The difference
was found to be rather small. Injecting noise on the elec-
tron beam led to exponential emittance growth.

The purpose of the non-linear compensation is to re-
duce the intrabunch tune spread, i.e. the tune footprint.
The footprint of long range beam-beam interactions show
a characteristic ’folding’ for particles at amplitudes close
to the beam separation. If this appears close to low order
resonances it is considered dangerous since there we have
dQ
dA ≈ 0. Bad lifetime of tails must be expected. The
effect of the non-linear lens is to scale down the footprint,
thus moving the folding over area to smaller particle am-

plitudes. This may now lead to a blowing up of the core of
the bunches that must be avoided. The recommended pro-
cedure now used in the simulation is to reduce the footprint
moderately, i.e. by a factor of two in the first step. A linear
lens should then be used to shift the bunch to a better work-
ing point where the reduced footprint is in an area free of
dangerous resonances. Therefore the non-linear and linear
compensation must be applied simultaneously.

In the discussion it was achnowledged that the study
helped to understand better the requirements and to define
the parameters for the compensation. However more exper-
imental data is desirable. While the linear compensation
looks very promising, it is recommended to further study
the non-linear compensation. A consensus was reached
that a small tune footprint (i.e. tune spread) alone does not
guarantee a safe running. It must be considered a necessity
but it is not sufficient.

4 CONCLUSIONS

Compensation schemes for head-on as well as for long
range beam-beam effects have been discussed. Both ap-
proaches were found promising and well under way and
the workshop strongly recommends to continue.
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Weak–Strong Beam–Beam Tracking for LHC V6.0

Y. Luo and F. Schmidt, CERN, Geneva, Switzerland

Abstract

Simulations have been performed for the LHC for a com-
plete model of the LHC with the multipole errors of all
dipoles and quadrupoles and the triplet errors, at injection
and collision energy respectively. For the two energies the
weak–strong beam–beam forces are included in the sim-
ulations for both the head–on and the long–range colli-
sions by using a realistic beam separation scheme. The
transverse amplitudes have been densely varied and several
phase space angles have been treated. It has been found
that the typical tracking periods of 105 turns are not suffi-
cient but that the tracking has to be extended to at least 106

turns. We will demonstrate that early indicators can help to
find not too pessimistic bounds for long–term stability.

1 INTRODUCTION

The LHC model studied in this note is based on LHC
version 6.0, with ATLAS, CMS, LHCB head–on collisions
and ALICE halo collisions. The lattice is anti–symmetric
about all four IPs. At injection energy the errors of the
main dipole’s of error table 9901 (see for instance Ref. [1])
are considered together with the b3 and b5 spool piece
correction system. At top energy the errors of low–beta
triplet quadrupoles (details see below) are introduced coun-
teracted by two types of correction packages with b3, b6 and
b4, a3, a4 correctors respectively. The beam–beam interac-
tion was simulated in the weak–strong approximation. The
dynamic aperture (DA) is defined as the maximum radius
for which the particles are stable for 105 or 106 turns. A
series of tracking studies are performed for five different
radial angles in the phase space. The phase space angle is
defined as φ = arctan

√
εy/εx, in this paper the angles

φ =15◦, 30◦, 45◦, 60◦ and 75◦ have been used. To deter-
mine the minimum dynamic aperture to a confidence level
of 95% the simulations have been performed for 60 differ-
ent representations of the random components of the mul-
tipole errors (seeds). All tracking runs has been performed
with the SixTrack code [2].

2 TRIPLET ERRORS AND THEIR
CORRECTION

At top energy the field errors in the low–beta triplets
play an important role in the reduction of the dynamic aper-
ture. The largest components of the latest triplet errors are
given in Table 1. The body and end effects have been com-
bined into one single number for the thin–lens approach

used here: each triplet quadrupole is split into four thin–
lens quadrupoles at each of IP1, IP2, IP5, IP8.

Component systematic uncertainty random
b3 0 0.72 0.36
b4 -0.175 0.83 0.36
b6 0.34 0.91 0.21
a3 0 0.69 0.34
a4 0 0.33 0.34

Component systematic uncertainty random
b3 0 0.63 0.34
b4 0 0.22 0.34
b6 0.21 0.41 0.18
a3 0 0.32 0.34
a4 0 0.26 0.34

Table 1: Low-beta quadrupole field errors for KEK version
4.x(upper) and FNAL version 3.1 (lower). Values are rela-
tive to the main field at x = 17mm in units of 10−4.

On either side of IP1, IP2, IP5, and IP8 two corrector
groups are placed as proposed by J. Strait at a CERN–
KEK–US meeting, April 2000. Each corrector group con-
tains several correction spools such that on either side
of each IP one corrector exists for b3, b4, b6, a3 and
a4. The correction formalism follows the one outlined by
A. Verdier and A. Faus–Golfe [3]. The principle is rather
simple: with one corrector for each multipole component
on either side of each IP, we compensate the total kick
for purely horizontal and purely vertical motion simulta-
neously.

3 BEAM SEPARATION SCHEME

There are 15 parasitic crossing points on either side
of each IP. The total crossing angle at collision is fixed
throughout to 300µrad. The crossing is horizontal in IP5
and IP8, while at IP1 and IP2 it is vertical [4]. The bunch
sizes in the opposite beam appearing in the beam–beam
element were calculated under the assumption of full anti–
symmetry at all four IPs; the beam separation was taken as
the distance of the orbits in ring 1 and ring 2. The beam–
beam separation in injection and collision mode are shown
in
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Figure 1: LHC 6.0 beam–beam separations at the four IPs,
(blue) circles for the injection and (red) triangles for the
collision case respectively.

Figure 1, where the separations at injection and collision
are given in the units of beam size in the corresponding
crossing plane, the horizontal axis is the count number of
the beam–beam encounters, 124 in total, around the four
IPs. At collision energy the separation is about 9.5 σ while
at injection energy it varies between 12 and 15 σ.

4 DYNAMIC APERTURE IN COLLISION
WITHOUT BEAM–BEAM

First the correction scheme of the low–beta triplet errors
has been investigated with the LHC collision mode with-
out beam–beam interaction. Figure 2 shows the dynamic
apertures of 105 turn tracking before and after triplet error
corrections.
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Figure 2: Dynamic aperture without and with low–beta
triplet field error correction. The beam–beam kicks are
not included and the tracking has been performed for 10 5

turns.

The triplet errors reduce the average and minimum dy-

namic aperture to about 13 σ and 9 σ respectively for 10 5

turns. This is mainly due to the large b6 component of the
quadrupoles. After correction, as described above, the av-
erage and minimum dynamic apertures increase to some
17 σ and 13 σ respectively, i.e. a gain of about 4 σ. So we
conclude that the proposed triplet error correction scheme
is indeed very effective. It has to be mentioned that only
part of this improvement of the DA remains in the presence
of the parasitic beam–beam kicks (see Ref. [5]).

5 DYNAMIC APERTURE AT COLLISION
INCLUDING BEAM–BEAM
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Figure 3: Dynamic aperture at collision including beam–
beam kicks. Tracking is performed for 105 and 106 turns.

Figure 3 shows the results for 105 and 106 turns when the
beam–beam interaction is included. Tracking for 10 5 turns
shows the average DA to go down to about 9 σ, while the
minimum DA is 7.5 σ. As found earlier [6, 7] this reduc-
tion is due to the many parasitic beam–beam crossings. We
know from numerous tests that the DA for plain nonlineari-
ties is not decreasing very much for tracking runs in excess
of 105 turns (see Ref. [8]). It was therefore surprising that
there is a dramatic decrease of the DA when the tracking
is extended to 106 turns. The average and minimum DA
becomes about 7 and below 6 σ respectively. Our conjec-
ture for this large reduction of the DA is the following: the
above mentioned parasitic crossings make the motion very
slightly chaotic at small amplitudes. As a result it takes
considerable time until a particle is driven to large enough
amplitudes such that the nonlinearities are strong enough
to cause the loss of the particle. In fact, the chaotic bound
(see below) goes down to about 4 σ and it has to be feared
that particle loss may take place down to that level when
the tracking is extended beyond 106 turns. Presently, our
computer power is insufficient to allow systematic studies
with those large turn numbers.
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6 DYNAMIC APERTURE AT INJECTION
WITHOUT AND INCLUDING

BEAM–BEAM

Tracking including beam–beam over 105 turns at injec-
tion energy (Figure 4) gives about 10 σ for the minimum
DA which is more than 1 σ smaller than without the beam–
beam kicks. Also in this case there is a sizable reduction of
the DA when the tracking is extended to 106 turns, in par-
ticular at the phase space angle of 45◦. In fact, the DA at
that phase space angle agrees well with the chaotic bound
which is found to have its minimum at about 7 σ.
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Figure 4: Minimum dynamic aperture at injection without
and including beam–beam kicks. Tracking is performed for
105 and 106 turns.

7 TUNE FOOTPRINTS FOR COLLISION
AND INJECTION
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Figure 5: Tune footprint at collision energy
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Figure 6: Tune footprint at injection energy

The tune footprints at collision and at injection are
shown in Figure 5 and Figure 6 respectively. At injection
energy one would naively expect that the beam–beam force
will not deteriorate the DA by much since the tune foot-
print is so much smaller at that energy (the beams do not
suffer from head–on collisions). Furthermore, this was to
be expected since the beam separation is so much larger at
injection. However, as we have seen in the last section, the
DA has been reduced by a considerable amount and at one
phase space angle by as much as 4 σ. From this we have
to conclude that the parasitic beam–beam kicks are rele-
vant with respect to the DA even for separation in excess of
12 σ.

8 EARLY INDICATOR OF PARTICLE
LOSS

Since many years the onset of chaos was used as an early
indicator of particle losses (for a more complete review
see Ref. [9]). However, due to the fact that the dynamic
aperture does not reduce much beyond 10 5 turns, the indi-
cator rendered too pessimistic estimates of the DA. How-
ever, this is obviously no longer true when beam–beam
kicks have been introduced in the simulations. It seems
therefore worthwhile to reexamine this technique. The first
observation has been that the global onset of chaotic mo-
tion is too optimistic. Instead, one has to watch for nests
of chaotic motion, which we call “chaotic spikes”, inside
the mostly regular regime, i.e. at smaller amplitudes. Of
course, by definition, there always exist very thin chaotic
regimes deep in the regular domain which will not lead to
particle loss after finite times. Our pragmatic approach is
to choose a certain width of the chaotic spike as a criterion
for very long–term losses. For this report we have chosen
a spike width of some 0.3 σ, but this has to be further opti-
mised to render reliable results.
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Figure 7: Example for a chaotic spike. A chaotic spike
we consider a limited range of amplitudes with chaotic be-
haviour. This has to be distinguished from the broad onset
of chaos where particle loss sets in rather quickly.

Chaos is typically being detected by following the evolu-
tion of the distance of phase space of two initially close–by
particles. Figure 7 shows an example of such a distance
after 105 turns. Whenever this distance rises by many or-
ders of magnitude (the maximum is normalised to 1) the
motion exhibits chaotic behaviour. The (red) arrow in the
figure indicates what we call a chaotic spike and the prob-
able long–term DA.

In Figure 8 this techniques is shown in action for the
300 individual tracking runs that make a typical study
case (60 seeds and 5 phase space angles): the upper
curve, (red) squares, shows the 105 turns DA, the medium
curves, (blue) triangles, depicts the 106 turns DA and lastly
the lower curve, (magenta) diamonds, demonstrates that
chaotic spikes derived from 105 turns can serve as a not
too pessimistic indicator of long–term losses.
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Figure 8: DA for 105 turns (upper curve (red) squares) and
106 turns (medium curve (blue) triangles) in comparison
with the chaotic spikes (lower curve (magenta) diamonds)

9 AMPLITUDE BLOW–UP

Another interesting indicator of particle loss is the onset
of the amplitude blow–up of a particle. In Figure 9 an ex-
ample is shown with the maximum and mean amplitudes
versus the initial amplitude. (The line “slope=1” represents
the condition of mean amplitude equal to the initial one.)
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Figure 9: Example for an amplitude spike.

As for the case of the global onset of chaos the global
amplitude blow–up is too optimistic to predict the long–
term DA. As a criterion we define here the “amplitude
spike” as that initial amplitude at which the maximum am-
plitude exceeds by 10% what is expected from previous
maximum amplitudes.
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Figure 10: DA for 105 turns (upper curve (red) squares)
and 106 turns (medium curve (blue) triangles) in compari-
son with the amplitude spikes (lower curve (magenta) dia-
monds); compare with Figure 8.

Figure 10 shows the same 105 and 106 turn DA curves
as in Figure 8 but this time together with the amplitude
spikes. This type of indicator also seems to have some
predictive power but it is probable less reliable than the
“chaotic spike” approach.
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10 CONCLUSIONS

The DA of the LHC including beam–beam kicks has
been studied for both injection and collision energy. In both
cases the parasitic beam–beam kicks lead to sizable reduc-
tions of the DA. In particular, we observe that there are very
slow but considerable losses at small amplitudes, such that
our usual 105 turn tracking is by far to optimistic. By the
same token early indicator become again important, since
they allow to find only slightly pessimistic predictions of
the DA for 106 turns and more.
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Beam-beam Interactions in Run II at the Tevatron

T. Sen, M. Xiao and N. Gelfand
Fermilab, MS 220
Batavia, Il 60510Abstract

The Tevatron in Run IIa is operating with three trains
of twelve bunches each. The impact of the long-range in-
teractions on beam stability are more significant compared
to Run I. We study these beam-beam interactions (head-on
and long-range) with particle tracking using two different
codes. The model includes machine nonlinearities such as
the field errors of the Interaction Region quadrupoles and
the chromaticity sextupoles. Tune footprints and dynamic
apertures are calculated for different bunches in a train. Ini-
tial studies of the impact of a crossing angle (relevant to
Run IIb) are also reported. Ideas for beam experiments that
could be useful in understanding the beam-beam limits at
the Tevatron are discussed.

1 INTRODUCTION

The Tevatron is now operating again in collider mode
from summer 2001. In the first phase, termed Run IIa, 36
p̄ bunches in three trains of twelve bunches collide with
36 proton bunches. This is a six-fold increase in the num-
ber of bunches from the last collider operation Run Ib.
Design proton intensities are higher so the head-on beam-
beam tune shifts experienced by the anti-protons are higher
than in Run Ib. The greater number of long-range beam-
beam interactions increase the total beam-beam induced
tune spread of the anti-protons. Furthermore these effects
are different for each p̄ bunch in a train since the sequence of
long-range interactions is different for each of them. All of
these effects taken together may reduce the dynamic aper-
ture (DA) and/or lifetime of the anti-protons significantly.
In this report we calculate the DA of a few bunches includ-
ing the nonlinear fields in the IR quadrupoles amongst the
nonlinearities. In the second stage of Run II, the plan is to
increase the luminosity further with more intense bunches,
larger number of bunches to decrease the number of interac-
tions per bunch crossing, and also introduce crossing angles
at B0 and D0 to avoid parasitic collisions with zero separa-
tion.

2 BEAM-BEAM INTERACTIONS IN RUN
IIA

The design luminosity will increase from Run I to Run
II mainly with an increase in the proton intensities and the
number of bunches. Table 1 shows the main beam param-
eters. In Run IIa each bunch will experience two head-on
interactions at B0 and D0 and seventy long-range interac-
tions. These long-range interactions will be distributedover
the entire ring with differing beam separations and differing

Table 1: Main beam parameters in Run I and Run II

Run Ib Run IIa
p/p̄ p/p̄

Luminosity [cm−2sec−1] 1.6×1031 8.6×1031

Bunch Intensities×1011 (2.3/0.55) (2.7/0.3)
Emittances 95% [mm-mrad] 23/13 20/15
Number of bunches 6 36
Bunch separation [m] 1049.3 118.8
Beam size at IP [µm] 37/28 33/29
Beam-beam parameter/IP ×10−3 3.4/7.4 1.5/9.9

phase advances from one interaction to the next. This se-
quence of interations will also be different for every bunch
in the train, e.g. the leading bunch 1 will experience all
long-range interactions downstream of the IP, bunch 6 will
experience five interactions upstream and six interactions
downstream of the IP etc. The tune footprint will therefore
differ from bunch to bunch. The nominal working point
(νx = 0.585, νy = 0.575) is chosen to lie between fifth
and seventh order resonances. At this working point the
Tevaton beam straddles twelfth order sum resonances. Op-
erational experience during Run I showed that these res-
onances did not cause a significant reduction in lifetime.
However the tune footprints and nonlinearities were also
smaller in Run I. Figure 1 shows the footprints due to the
beam-beam interactions in Run IIa for bunch 1 and bunch
6 superposed on nearby sum resonances up to twelfth or-
der. Footprints of all bunches except for bunch 1 and 12
are clustered around that of bunch 6. The major differences
in the tuneshifts between bunch 6 and bunch 1 and 12 are
due to the missing parasitic collision closest to the IP, up-
stream for bunch 1 and dowstream for bunch 12. The vari-
ation in the tune shift and in the tune spread from bunch to
bunch will be greatly enhanced in Run IIb when the num-
ber of bunches is increased to more than one hundred. The
Tevatron beam-beam compensation project [1] aims to re-
duce this spread in tunes by colliding anti-proton bunches
with a low energy electron beam whose intensity will be
varied from bunch to bunch. However even in Run IIa, the
stronger beam-beam interactions at the IP (ξ ≈ 0.01 com-
pared to ξ ≈ 0.0074 in Run Ib) and the larger number of
long-range interactions may cause emittance growth and re-
duced lifetime of the anti-protons.

Figure 2 shows the beam separation (in units of the rms
bunch size) at all the seventy two locations of beam-beam
interactions for bunch 6. At most locations the beam sepa-
ration is of the order of 10σ. The prominent exceptions are
the parasitic collisions nearest to the IPs where the separa-
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Figure 1: (color) Tune footprint for bunches 1 and 6 in a
train.

tion is only about 6σ. These nearest interactions in fact also
have the dominant contribution to the tune footprint.
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Figure 2: Separation between p̄ bunch 6 and the opposing
proton bunch at all 72 beam-beam interactions. The head-
on collisions are at locations 30 and 54.

3 FOOTPRINTS AND DYNAMIC
APERTURE CALCULATIONS

The bunch length in the Tevatron is comparable to the
beta function at the IP, σs ≈ 37 cm, β∗ = 35 cm. Re-
cent theoretical work [2] has shown that bunch length ef-
fects which include hour glass effects, longitudinal Gaus-
sian density distribution and phase averaging reduce reso-
nance strengths in the Tevatron by two orders of magnitude
compared to strengths calculated with zero length bunches.
We include these bunch length effects in the simulations of
the head-on interactions described below. The long-range
effects are modelled by delta function kicks.

The simulation model includes the beam-beam kicks, the
nonlinear fields in the Interaction Region (IR) quadrupoles
(the beta functions in these magnets is about an order of
magnitude greater than the values in the arcs) and the chro-
maticity correcting sextupoles. Two simulation programs

MAD and TEVLAT are used to track particles. In most
cases the DA calculated by these codes are within 2σ (or
about 15%) of each other. In this report linear imperfections
such as orbit errors and coupling due to misalignments are
not included and neither are time-dependent effects such as
those due to power supply ripple. Synchrotron oscillations
and other momentum dependent effects have yet to be stud-
ied in sufficient detail. These effects are important and will
be included in further studies.
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Figure 3: (color) Tune fooprint of p̄ bunch 6 with (i)the
head-on interactions and (ii) all the beam-beam interac-
tions. IR errors and chromaticity sextupoles are included
in each case. The footprint is shown for particles with am-
plitudes up to 7σ. Nearby fifth, seventh, tenth and twelfth
order sum resonances are shown. The linear lattice tune is
(0.585,0.575).

Figure 3 shows the tune footprint for p̄ bunch 6 in two
cases. The addition of the long-range interactions increases
the tune spread significantly and particles at amplitudes up
to approximately 3σ now straddle the 5th and 10th order
resonances. Inclusion of the IR errors does not change the
footprint significantly.

Tracking to calculate the DA was done for 105 and 106

turns. For 105 turns, particles were launched at several
transverse amplitude ratios. Both the average and the min-
imum over these values are taken as measures of the DA.
Figure 4 shows the DA of bunch 6 with only the beam-beam
interactions in one case and with all the beam-beam kicks
and machine nonlinearities in the other case. For compari-
son, the DA with only head-on and IR errors is also shown.
In all cases the chromaticity sextupoles are included. It
is evident that the long-range interactions cause a sharp
drop in the DA. For example, the minimum DA drops from
13.6σ to 8.6σ when these interactions are included (see Ta-
ble 2). The IR errors have a smaller relative impact, they
reduce the average DA by about 1.6σ. The relative impor-
tance of these IR errors could change when crossing angles
are introduced and particle orbits go significantly off-axis
through these magnets.

We have also calculated the DA when the only long-
range interactions are the nearest parasitic collisions (PCs)
to the IPs. We find that with only these PCs both the aver-
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Figure 4: (color) DA for bunch 6 with (i) all beam-beam
kicks and (ii) all beam-beam and the IR errors. For compar-
ison, the DA with only head-on interactions and IR errors is
also shown.

age and minimum DA are about 2σ smaller but not quite as
small as when all the PCs are included, see Table 2. It is
therefore not obvious that reducing the tune spread alone,
for example by choosing a different bunch spacing so that
only the nearest PCs are further apart, would necessarily
improve the DA.

The DA is sensitive to the machine tune. One might
choose the tunes so that only small amplitude particles (<
1σ) straddle the fifth and tenth order resonances. Calcula-
tions with a few tunes chosen to accomplish this do not ap-
pear to improve the DA significantly, see Table 2.

Nonlinear effects leading to amplitude growth are of-
ten reflected in dramatic tune changes as particles traverse
phase space. We have looked at tune changes of particles
between two consecutive intervals of 512 turns. A FFT with
a Hanning filter is used to improve the accuracy of the tune
calculation. This is similar to the technique used in [4] for
the LHC. The top figure in Figure 5 show the change in tune
over two consecutive sets of 512 turns with the IR errors
and head-on interactions while the bottom figure shows the
change in tune when the long-range interactions are added.
We find that when the long-range interactions are added,
tune diffusion increases by an order of magnitude in regions
close to the diagonal (x = y) in amplitude space but is rel-
atively unchanged along the x and y axes. Figure 4 shows
that the DA drops the most close to the diagonal. These fig-
ures of tune changes also show that long-range interactions
enhance tune diffusion from amplitudes greater than about
2σ.

Longer term tracking (106 turns) was done only along the
diagonal in amplitude space for bunches 1, 6 and 12. Figure
6 shows the survival plot - the number of turns survived as a
function of the initial amplitude - for these bunches. Bunch
1 appears to be the least stable and bunch 12 the most sta-
ble. The maximum variation in DA from bunch to bunch is
2σ. Even after 106 turns there is no indication that the stable
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Figure 5: (color) Tune diffusionplot calculated for particles
distributed over transverse phase space. The different col-
ored symbols show the change in tune ∆ν ≡ |∆νx|+|∆νy|,
∆νx for example is the change in horizontal tune from one
set of 512 turns to the next set of 512 turns. Green: 10−7 ≤
∆ν ≤ 10−6, Light Blue: 10−6 ≤ ∆ν ≤ 10−5, Blue:
10−5 ≤ ∆ν ≤ 10−4, Magenta: 10−4 ≤ ∆ν ≤ 10−3,
Red: 10−3 ≤ ∆ν ≤ 10−2. The top figure was obtained in
a lattice with IR errors and head-on beam-beam interactions
while the bottomfigure also had the long-range interactions.

amplitude is levelling off for either of these bunches. Since
106 turns corresponds to about 21 seconds in the Tevatron,
particles at smaller amplitudes than seen in Figure 6 and in
Table 2 could be lost over a time scale of minutes. During
operation it is only necessary that the real DA exceed the
physical aperture which is defined by the primary collima-
tors which are at � 8σ from the beam core.

The tracking results reported so far have been in 4D
phase space. Synchrotron oscillations introduce synchro-
betatron resonances which can be driven by a variety of
sources. We have begun 6D tracking for the Run IIa sce-
nario - preliminary results and discussion can be found in a
companion paper in this workshop [3].
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Table 2: DA in σ for bunches 6, 1 and 12
〈DA〉 DAmin

Bunch 6: νx = 0.585, νy = 0.575
DA after 105 turns

IR errors 18.7 17.0
Head-on + IR errors 15.5 13.6
Head-on,nearest PCs, IR errors 13.6 11.3
All beam-beam 12.9 8.1
All beam-beam + IR errors 11.3 8.6

All beam-beam + IR errors
νx = 0.572, νy = 0.574 11.0 10.0
νx = 0.591, νy = 0.580 8.5 7.6
νx = 0.575, νy = 0.585 9.5 8.3

DA after 106 turns
Bunch 1 6.4
Bunch 6 7.8
Bunch 12 8.5
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Figure 6: Survival plot for bunches 1, 6 and 12 up to 106

turns. All beam-beam kicks and machine nonlinearities are
included.

4 IMPACT OF A CROSSING ANGLE

Increasing the luminositybeyond that obtained in Run IIa
will require that the bunch spacing decrease to 132 nsecs
from the present 396 nsecs and the number of bunches in-
crease from the present 36 per beam to more than a hundred
in each beam. This is necessary in order to limit the number
of pp inelastic events per bunch crossing to less than three.
The shorter bunch spacing introduces a number of beam dy-
namics issues that have to be considered. One of these is
that the parasitic collisions nearest to the IPs now occur be-
fore the electrostatic separators. A crossing angle at the IP
is needed to separate the beams at these locations. A half
crossing angle of about 200 µradians in the 45◦ plane sep-
arates the beams by about 4σ at these nearest parasitic col-
lisions. The crossing angle in turn has several other conse-
quences, chief among them is the loss of luminosity at the
main IPs. Figure 7 shows the loss of luminosity and the re-
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Figure 7: (color) The impact of a crossing angle (in the 45◦

plane) on the luminosityand the beam-beam parameter. All
values are normalized to the value at zero crossing angle.
At a half crossing angle of 200µ radians, the luminosity is
reduced to 40% of its value without a crossing angle.

duced beam-beam parameter as a function of the crossing
angle.

The beam-beam parameter is also reduced as seen in this
figure. Figure 8 shows the beam-beam tune footprints due
to the main collisions at B0 and D0 for two cases: (1) with-
out a crossing angle and (2) with a half crossing angle of
200µradians. With this crossing angle, there is a sharp
reduction in the footprint and the number of resonances
spanned by the beam distribution is also reduced. However
as is well known, the crossing angle couples the longitudi-
nal dynamics to the transverse and excites synchro-betatron
resonances. In addition, particle orbits with crossing an-
gles go through the IR quadrupoles at larger amplitudes and
therefore experience more nonlinear fields. These fields
can also reduce the dynamic aperture even withoutcoupling
from longitudinalfields. Here we will first address the ques-
tion whether the increased nonlinearities in the presence of
the crossing angles have an impact on the dynamic aper-
ture with 4D tracking. We will consider 36 bunches in each
beam so this scenario is only likely during a period of ma-
chine studies during Run IIa. Then using a separate code
we will consider only the impact of synchro-betatron reso-
nances generated by the crossing angles in a perfectly linear
machine and without long-range interactions.

Crossing angles at B0 and D0 are generated using the
separators in the ring. While almost all separators are
changed to some extent, the primary separators used are
B17H, B11H, D48H in the horizontal plane and B11V,
C17V, A17V in the vertical plane. The maximum cross-
ing angles that are possible are determined by the maximum
separator strength which is about 4.5 MV/m. With a cross-
ing angle, large changes in orbit are within the IR but the
orbit in the arcs also changes. This changes the separations
between the beams at the locations of the long-range inter-
actions. Figure 9 shows the difference in radial separation
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Figure 9: Difference in radial separation between the beams
at the locations of the long-range interactions for bunch 6.
The differences are taken between separations without a
crossing angle and with a 500 µ radian crossing angle. A
positive value implies that the separation with the crossing
angle is greater.

at each beam-beam encounter when the crossing angle is in-
creased to 500µradian. While the change in separation fluc-
tuates, on average the separation at this crossing angle in-
creases by about 1 σ. Figure 10 shows the DA with total
crossing angles from 300-500 µrad. For comparison, the
DA without a crossing angle is also shown. Without the ef-
fects due to synchro-betatron resonances, these 4D tracking
results show that at a crossing angle of 300 µradian, the DA
incresaes slightly but at 400 and 500 µradians, the DA de-
creases to below that withouta crossing angle. We conclude
that the impact of the IR errors is significant at crossing an-
gles beyond 300 µradians. We emphasize though that these
results are preliminary and a determination of the optimum
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Figure 10: (color) Dynamic aperture of bunch 6 at differ-
ent total crossing angles. Particles were tracked in 4D for
100,000 turns.

crossing angles will require 6D tracking.
The beam-beam interactions at a crossing angle require

careful modelling to include all bunch length related ef-
fects. As mentioned earlier, bunch lengths in the Teva-
tron are comparable to β∗. The beam-beam lens in MAD
was modelled to include bunch length effects but the beam-
beam kick in MAD is in 4D. A separate code was written to
include all bunch length effects (historically, this preceded
our tracking with MAD) and the longitudinal kicks from
the beam-beam interaction. In the present version of this
code, long-range interactions are not included and the lat-
tice is treated as a tranverse linear map. Synchrotron os-
cillations are included. 1000 particles with an initial Gaus-
sian distribution were tracked for a million turns - the am-
plitude of each particle as well as the amplitudes averaged
over the distribution were recorded at each turn. Figure 11
shows the maximum of the averaged transverse sum ampli-
tudes as a function of crossing angle. The opposing bunch
was divided into 9 slices and was modelled in two ways: (i)
only the hourglass effect is included, (ii) all bunch length ef-
fects included. There is a significant difference between the
two - the amplitude growth is much smaller in the second
case. Tune scans with this code (all bunch length effects in-
cluded) show that particle dynamics with crossing angles is
much more sensitive to the choice of tune but at well chosen
tunes the synchrobetatron resonances do not cause signifi-
cant amplitude growth [2]. Future studies with crossing an-
gles will feature 6D tracking, inclusion of all bunch length
effects, long-range interactions and lattice nonlinearities.

5 BEAM EXPERIMENTS

5.1 Beam-beam tune footprint studies

Measurement of the footprint is the most basic test of the
nonlinearity of the beam-beam force and the machine lat-
tice. A comparison with the theoretical footprintwill reveal
if all important effects have been included in the theoretical

81



0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500

M
ax

im
u

m
 c

h
an

g
e 

in
 <

am
p

li
tu

d
e>

 (
%

)

Total crossing angle (micro-rad)

Hour glass effects only
All bunch length effects

Figure 11: Change in the average transverse amplitude of
a bunch as a function of the total crossing angle. The only
nonlinearities were the beam-beam kicks at the two main
IPs and synchrotron oscillations. The maximum % change
recorded over 1 million turns is plotted on the ordinate.
The bunch is represented by 1000 particles with three seeds
used for the initial 6D Gaussian distribution. The opposing
bunch at the collision points was divided into 9 slices but
the slices were modelled in two separate ways. In one case
only hour glass effects were taken into account, in the other
a longitudinal Gaussian density distribution and the phase
advance between the slices were also included.

model. The tune as a function of amplitude could be mea-
sured with a pencil anti-proton bunch which can be kicked
to different amplitudes in both transverse planes. If this
pencil bunch is sufficiently narrow, it will probe the force
withina small region of phase space where the tune is nearly
constant. Following the kick, this probe bunch will deco-
here due to the nonlinear beam-beam force and its emittance
will grow as it fills out phase space by shearing. In order to
plan for well-prepared studies, a number of issues have to
be understood. These include:

• The decoherence time as a function of the kick ampli-
tude. This will determine how quickly the tune has to
be measured.

• The transverse size of the pbar bunch in order to get a
well defined tune as a function of amplitude.

• If a single pbar bunch can only be used for tune mea-
surement at one amplitude due to emittance growth,
then it would be necessary to have many pencil pbar
bunches in the beam and then cog each bunch to bring
it into collision. Otherwise, the time to dump a pbar
bunch, inject and accelerate another bunch before an-
other tune measurement would prohibitmeasurements
at several amplitudes.

• An alternative possibility could be to use the Teva-
tron electron lens to adiabatically kick a pbar bunch by
gradually increasing the electron beam current. This

might work similar to the AC dipole suggested for
other measurements at RHIC. If emittance growth can
be avoided by this technique, then each pencil bunch
could be used to measure the tune at more than one am-
plitude.

• For a cleaner comparison with the theoretical model,
it might be useful to reduce the energy spread in the
beam. This could be done by scraping at high disper-
sion locations. The momentum spread could be mea-
sured after scraping. For any kind of scraping, it will
take time to learn how to scrape efficiently without los-
ing the beam.

5.2 Crossing angle studies

One could start with a single anti-proton bunch and two
proton bunches so the anti-protons collide with a bunch at
B0 and D0. Measure the lifetime, and background losses
at different crossing angles. Orbit effects due to the cross-
ing angles will need to be eliminated, thus it would be use-
ful to first measure the single beam lifetime without and
with crossing angles. Limitations due to physical aperture
can be determined this way. These measurements may re-
veal that there is a crossing angle beyond which the ef-
fects due to the nonlinear fields of the IR quadrupoles and
the synchro-betatron resonances lead to unacceptably large
losses. Some of the issues in these studies are:

• The lower limit on the anti-proton single bunch inten-
sity in order to see a change in say anti-proton back-
ground losses on the loss monitorsand anti-proton life-
time on the current monitors.

• It would be useful to do these studes with different
combinations of signs of crossing angles at B0 and D0.
Out of the 16 possibilities (two in each plane at each
IP), only a few will yield the required beam separation
with∼100×100 bunches.

• The bunch length could be increased by shaking it with
RF noise or by an injection mismatch. Lifetime and/or
background losses could be measured as a function
of the bunch length. It would be useful to shorten
the bunch length as well but this may not be practical
given the limitations on the RF voltage and the trans-
verse focusing. In addition IBS increases the bunch
length.

• Tune scan of the pbar bunch to cross several reso-
nances. This would require that the differential sex-
tupole circuits be well controlled so that only the p̄ tune
is changed while keeping the proton tune constant.

5.3 Long-range interactions

• The limit with 36×36 bunches.

A study of the lifetime and losses with 36 bunches per
beam with different separations at the locations of the
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parasitic collisions. The parasitics nearest to the IPs
are the ones with smallest separations so these would
be varied first. This might reveal which parasitics need
to be controlled the best.

• Are parasitic collisions just equivalent to scraping
large amplitude particles?

One way to answer this is to measure lifetimes and
losses caused by a scraper moved in closer to the beam
with only head-on collisions. Measurements could be
repeated with parasitic collisions at different separa-
tions and scrapers move out.

If the parasitic crossings only remove all particles be-
yond a certain amplitude, the results would be similar.
If instead the parasitics also cause emittance growth,
the results would presumably be different.

• Benchmarking simulations

One could start with a few bunches in the proton beam
and spaced so that each anti-proton bunch experiences
only the nearest neighbour interactions in each IR but
not the head-on interactions. The lifetime could be
measured as a function of the proton intensity and also
as a function of the beam separation at these nearest
neighbour points.

With the bunch spacing at 396 nanoseconds, perhaps
the most useful experiment to determine the feasi-
bility of shortening the spacing to 132 nanoseconds
would be to collide an anti-proton bunch with 36 pro-
ton bunches with crossing angles at B0 and D0. This
can be accomplished with the present set of separa-
tors. In this experiment the impact of both the synchro-
betatron resonances and the long-range interactions
will be felt.
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IN THE TEVATRON RUN II LATTICE

Y.Alexahin1, T.Sen, M.Xiao, FNAL, Batavia, IL 60510

                                                          
1 Permanent address: LPP JINR, Dubna 141980 Russia

Abstract
     Under certain circumstances - such as large chromatic
tune modulation, bunch length comparable with the beta-
function, crossing at an angle or finite dispersion at the
interaction points - the beam-beam interaction can be a
source of the synchro-betatron coupling.
     In the present report the effect of these factors on the
p-bar stability in the Tevatron Run II configuration is
considered.
     It is found that the long-range interactions in the
presence of large dispersion produce large contribution
(~10) to the chromaticity of the betatron tunes. This
chromaticity, in its turn, can give rise to multiple
synchrotron satellites of the betatron resonances
increasing their effective width.
     At the standard Tevatron working point the synchro-
betatron resonances are found to be strong enough to
affect not only large amplitude particles but even the core
particles.

1  INTRODUCTION
     In Run II [1] beam-beam driven resonances (the
synchro-betatron ones in particular) may  present a
greater danger than in the previous runs: besides an
increase in the beam-beam tuneshift due to a larger
number of protons per bunch and a smaller proton
emittance (see Table 1), there will be a factor of seven
increase in the number of parasitic long-range
interactions. These numerous parasitic encounters will
strongly enhance excitation of the odd-order resonances.

Table 1. Proton beam parameters for different Tevatron
runs.
     Another important effect which the long-range
interactions give rise to is the beam-beam induced
chromaticity (observed experimentally at LEP [2]). It
depends on the particle transverse amplitudes and the
bunch collision schedule and therefore can not be
eliminated with the help of sextupoles. The large
chromatic tune modulation of the off-momentum particles

will produce synchrotron satellites increasing the
effective width of the betatron resonances.
     The effect of the head-on interactions can be more
pronounced in the Run II configuration if the bunch
length is decreased in the second stage with the use of
superconducting RF. One option that was explored was to
provide VRF = 20MV at 212MHz  compared to VRF = 1MV
at 53MHz with the existing RF system. The reduction in
the bunch length is large  enough to weaken the beneficial
phase averaging effect [3, 4, 5] but may be insufficient to
avoid exciting the synchrotron satellites by the betatron
phase modulation of the beam-beam kicks at the low-beta
interaction points (IPs). Another major source of
synchro-betatron coupling which will appear in Run IIb is
a crossing angle at the low-beta IPs.
      This report presents some results on the beam-beam
driven synchro-betatron resonances in the Run II
configuration obtained by analytical [5, 6] and numerical
methods.

2  BEAM-BEAM CHROMATICITY
     Due to the finite dispersion at parasitic IPs there can
be significant variation of the instantaneous values of the
tuneshifts in the course of the synchrotron oscillations.
We will treat this variation in terms of the beam-beam
contribution to chromaticity. To estimate the order of the
effect let us consider a single long-range interaction point
at horizontal separation dx. The tuneshift for a particle
with constant momentum deviation δp is

2
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−=∆ (1)

Correspondingly, we have for the beam-beam
contribution to chromaticity (which we will call just �the
beam-beam chromaticity� for brevity)

Run Ib Run IIa Run IIb
Np /bunch,               1011 2.32 2.7 2.7
εpn (95% norm.), π⋅µm⋅rad 23 20 20
ξ /nominal IP 0.0074 0.01 0.01
N parasitic IPs 10 70 278
ξ, total ~ 0.015 ~ 0.025 ~ 0.025
σs ,                          cm 63 37 37/14
σE ,                         10-4 1.5 0.9 3.1
νs ,                          10-3 0.7 0.7 6.4

Figure 1: (color) Totalp distribution in the chromaticity
plane, particles with zero betatron amplitudes in each of
the 12 bunches in a train are shown with red circles.
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     The ratio |Dx/dx| can be as large as 103, so that for
tuneshifts  of the order of 10-3, the shift in chromaticity
may reach ~1.
     To calculate analytically the beam-beam chromaticity
as a function of the betatron amplitudes ax,y
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we use the formulas of Ref.[6] for the beam-beam
tuneshift taking into account the vertical dispersion which
can be quite large on the helical orbit.
     Since the set of parasitic IPs is specific for each bunch
in the train, there is also significant bunch-to-bunch
variation. Fig.1 shows the total distribution of antiprotons
(represented by 1500 points/bunch) in the plane of shifts
in chromaticities due to 70 parasitic IPs.

 Figure 3:  (color) Variation of chromaticities with
particle amplitude in pbar bunch 6.

The analytical predictions were checked  with tracking.

Figure 3 shows the amplitude dependent chromaticities
for three cases: (1) single beam only, (2) machine errors
and the head-on beam-beam interactions and (3) machine
errors and all beam-beam interactions. Without the beam-
beam interactions, the chromaticities stay nearly constant
at the desired values. The head-on interactions cause the
chromaticities to vary from about �5 units in both planes
at small amplitudes to zero at

4~22
yx aaa +=⊥

, (4)

ax,y being taken in the beam r.m.s. sizes. This
contribution can be understood as a consequence of the
dynamic β effect.  The head-on interactions change the
maximum beta functions in the IR quadrupoles for
example from (1116, 1099) m to (1340, 1347) m. This
changes the chromaticity contribution of all the IR
quadrupoles by about �10 units.  The addition of the long-
range interactions first reduces the dynamic beta effect so
the beta functions around the ring are almost the same as
with the single beam. They also cause, as predicted by the
analysis, the horizontal chromaticity to vary from 6 to 12
units and the vertical chromaticity to vary from 5 to 8
units.
     We see that the chromaticities cannot be made small
simultaneously for all particles in all bunches with the
help of correction sextupoles.

3  BEAM-BEAM RESONANCES
     Fig.2 shows the footprint of the antiproton bunch #6 in
the tune diagram obtained with the standard optics and the
bare lattice tunes νx0=20.585, νy0=20.575. The 5th, 7th and
12th order sum resonance lines2 are also shown.
     In this report we limit ourselves to a single resonance
approximation considering one resonance

m⋅ν ≡ mxνx + myνy+ msνs ≈ n (5)
at a time and then applying the Chirikov criterion to
assess the cooperative effect of multiple resonances. We
calculate analytically the resonance strength and beatings
of the betatron amplitudes using the formulae of Ref.[6].
     The synchrotron motion affects the resonance behavior
in a number of ways. First, it somewhat weakens the
principal resonance, ms = 0, by the virtue of: i) dephasing
the successive beam-beam kicks due to  chromatic
betatron tune modulation; ii) phase averaging of every
kick due to a finite bunch length. On the other hand, these
very same mechanisms give rise to  synchrotron satellites,
ms ≠ 0, which can effectively widen the resonance if the
Chirikov overlap condition is met. In addition to these
mechanisms, the crossing angle and finite dispersion can
contribute to excitation of the synchrotron satellites.
     If there are no offsets, no crossing angle nor dispersion
at the IPs and βx = βy = β*, the effect of the longitudinal
motion on the resonance excitation can be described by
the factor [6]

                                                          
2 Analysis shows that the difference resonances are less
important at the working point considered.

Figure 2: (color) Tune footprint of pbar bunch 6 for two
cases: (1) IR quad errors and head-on interactions and
(2) IR quad errors and all beam-beam interactions.
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with αM  and R being the momentum compaction factor
and the mean radius of the orbit,
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     It is obvious that |Lm(Js)| ≤ 1 always.

3.1 Betatron tune modulation
     Let us first consider odd-order resonances due to
parasitic interactions. Since the betatron functions at these
points are large in comparison with the bunch length we
may put ϕ→0 in eq.(7) and obtain the classical formula
for the synchrotron satellites excitation:
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where Jm(x) is the Bessel function, the relation
σs = RαMσE/νs has been used.
     As discussed in Section 2 the total chromaticity can
not be made small by the conventional use of sextupoles.
As a  result  synchrotron satellites up to a high order,
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( ss Ja 2= ), can be excited leading to an appreciable
increase in the effective resonance width.
     Fig. 4 shows the swing of the transverse amplitude, a⊥,
due to the 5th order resonances and their satellites excited
by 70 parasitic interactions for particles in the 6th

antiproton bunch with initially ax = ay and Js = 1 (as = √2)
in the absence of the bare lattice chromaticity
(ηx0 = ηy0 = 0). The sidebands of different resonances
overlap which means the possibility of fast particle
transport over the entire set of resonances almost
doubling the particle amplitude (from a⊥ ≈ 1.75 to
a⊥ ≈ 3.25). This can affect not only the particle lifetime
but the luminosity as well.
     A 2D picture of the resonance satellites overlap is
presented in Fig.5. The left plot shows the width of the
betatron resonances for on-momentum particles (Js = 0)
when no satellite is excited. At large synchrotron
amplitudes (Js = 1) these resonances are, in accordance
with Eq. (10), noticeably suppressed (e.g. the 2νx+3νy
resonance width falls below the chosen threshold).
However, due to excitation of numerous satellites the
effective resonance width is substantially increased.

(6)
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Figure 6: (color) The same as in Fig.4
(right) but with the superconducting RF.

ax

ms

4νx+νy

5νx

a⊥

Figure 4:  (color) Each horizontal line
represents the swing of the transverse
amplitude due to the 5th order resonances
and their synchrotron satellites at as = √2.
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Figure 5:  (color) Swing of the transverse amplitudes
due to the 5th order resonances and their synchrotron
satellites at as = 0 (left) and as = √2 (right).
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With shorter bunches σs = 14 cm,  the distance between
the satellites of each of the 5th order resonances becomes
larger than the resonance width (Fig. 6) but now the
satellites of different resonances overlap so that the
amplitude range over which the fast diffusion can occur
increases.
     It is obvious that the working point should be pulled
away from these resonances, e.g. down along the main
diagonal. However, the beam distribution in that case will
span all the 12th order resonances.

3.2 Finite bunch length effect
     In the case of a large bunch length (σs ~ β*) the
synchrotron satellites can be excited also via modulation
of the betatron phase of the beam-beam kicks in the
course of the synchrotron oscillations. This mechanism is
important for low-beta interaction points where (in the
absence of misalignments) only even-order resonances
(and their satellites) can be excited:

mmm yx 2=+ . (11)

For numerical calculations we use the representation [6]
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where λ = σs /β*√2. Fig. 7 shows the dependence of the
absolute value of  the longitudinal factor defined in Eq.
(12) for the principal resonance, ms = 0, on the resonance
order, 2m, at several values of the normalized synchrotron
amplitude, as, σs = β*, and zero chromaticity, η = 0. For
an on-momentum particle, as = 0, the longitudinal factor
rapidly falls off with the resonance order due to the phase
averaging, reaching as small value as 10-3 at 2m = 12.
However, with increasing as the phase averaging is less
effective, as found in Ref.[5]. It may not be sufficient to
suppress the head-on contribution to excitation of high
order resonances. Fig. 8  shows the longitudinal factor as
a function of as for the resonances of the order 2m = 8, 12,
16.

Now let us turn to the synchrotron sidebands, ms ≠ 0. Fig.
9 shows the dependence of the longitudinal factor of the
2m = 12 resonances on the sideband number for several
values of as at σs/β* = 1, η = 0. We see that the strength of
the synchrotron satellites can be comparable with that of
the principal resonance effectively increasing its width.
Fig. 10 shows beatings in the transverse amplitudes due to
the 12th order betatron resonances and their synchrotron
satellites excited by the beam-beam interaction at two
Tevatron low-beta IPs at Js = 1, η = 0, σs/β* = 37/35,
νs = 7⋅10-4 (left) and σs/β* = 14/35, νs = 6.4⋅10-3 (right). In
the first case the effect, although quite pronounced,
should not pose significant problems in the Tevatron
operation since the resonance groups are well separated.
Let us note that the lines representing effect of a
particular resonance are not shown if their length does not
exceed a certain threshold value (~ the line width) or if
they lie outside the circle a⊥ = 11.

In the second case, which corresponds to the 20
MV, 212 MHz SC RF, i) the width of the resonances
becomes larger due decrease in the phase averaging, ii)
satellites are farther apart due to a larger synchrotron tune
As a result the 12th order resonances and their satellites
form a maze through which particles, with some
assistance from external noise and higher order
resonances, can escape starting from amplitudes possibly
as low as a⊥ ~ 4.

(12)
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Figure 7: Longitudinal factor vs. resonance order.
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                    4  DYNAMIC APERTURE
Extensive tracking calculations of the dynamic aperture in
4D are reported in [7]. We have begun 6D dynamic
aperture calculations for the optics configuration of Run
IIa. Here we report some results of these calculations as a
check of the analysis above.

Figure 11: (color) 6D dynamic aperture of pbar bunch 6
after 100,000 turns (about 72 synchrotron periods). The
dynamic aperture for the off-momentum cases correspond
to 1δp and 3.45 δp.

Average DA (σ) Minimum DA(σ)
dp/p = 0
dp/p=8.7E-5
dp/p=3.E-4

9.8
8.9
8.1

8.6
7.8
6.4

Table 2 : The average and minimum 6D dynamic aperture
for the three cases shown in Figure 11.

Figure 11 shows the 6D dynamic aperture calculated for
three values of momentum deviation. The average and

minimum DA (shown in Table 2) decrease by about 1σ as
the momentum deviation is increased. While the
reduction in DA is expected, it is not significantly large.
This implies that at least at this time scale, the synchro-
betatron resonances are not very strong. It is possible that
the drop in DA with momentum deviation is more
significant at longer time scales. This will be checked
with longer term tracking.

5  SUMMARY
• Beam-beam resonances may prevent the desired
luminosity goals in Run II from being achieved. These
resonances will be particularly strong in Run IIb, and
more so if  shorter bunches are used.

• The chromatic tune modulation is a major driving
mechanism of  synchro-betatron resonances, it can not be
avoided due to large beam-beam chromaticity. Another
important mechanism is the betatron phase modulation at
low-beta IPs.

• The beam-beam contribution to chromaticity strongly
depends on the particle transverse amplitudes and the
bunch collision schedule and therefore can not be
eliminated with the help of sextupoles. The total
(intrabunch + bunch-to-bunch) spread in chromaticity
reaches ~ 12 units horizontally and ~ 5 units vertically.

• With the bare lattice tunes around the values,
νx0=20.585, νy0=20.575, it is difficult to avoid exciting
low-odd-order (either 5th or 7th order) resonances, the 12th

order resonances also lie  within the beam-beam footprint.
Therefore it may be helpful to choose another working
point (e.g. the one at νx0=20.685, νy0=20.675).

• Tracking calculations of the 6D dynamic aperture,
with all effects mentioned here included, indicate that
synchro-betatron resonances do not dramatically reduce
the dynamic aperture on relatively short time scales.

• The present analysis should be extended to the
RunIIb configuration with 140×105 bunches where the
effect of the odd-order resonances will be much stronger.

• During optimization of the operating conditions in
the Tevatron, it may be helpful to have an on-line
program for computation of the beam-beam footprints and
resonance widths for the particular bunch fill and tune
settings.
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Beam Rounders for Circular Colliders

A. Burov∗, S. Nagaitsev, FNAL, Batavia, IL
Ya. Derbenev, Jefferson Laboratory, Newport News, VA

Abstract

By means of linear optics, an arbitrary uncoupled beam
can be locally transformed into a round (rotation-invariant)
state and then back. This provides an efficient way to round
beams in the interaction region of circular colliders.

1 ROUND BEAMS AND
ROTATION-INVARIANT MAPS

Round beams in the interaction region of a circular col-
lider are widely believed to be an effective way to increase
the luminosity (see e. g. [1] and the references therein).

Canonical angular momentum (CAM) preservation by
the IP revolution mapping might play a crucial role in the
luminosity upgrade of circular colliders. The CAM is pre-
served when 2 conditions are satisfied:

• The lattice IP revolution map is CAM-preserving;

• The beams are round in the IR.

General form of the CAM-preservingmatrices was found
by E. Pozdeev and E. Perevedentsev [2]:

T =
(

T · cos θ T · sin θ
−T · sin θ T · cos θ

)
≡ R(θ)

(
T 0
0 T

)
(1)

The CAM-preserving group is identical to the symplectic
rotation-invariant transformations.

Parameterization of the 2×2 unimodular matrix T can be
taken in the conventional Courant-Snyder form, in terms of
its input α1, β1 and output α2, β2 parameters and a phase
advance µ : (see e. g. [3]):

T =


√

β2
β1

(c + α1s)
√
β1β2s

−1+α1α2√
β1β2

s + α1−α2√
β1β2

c
√

β1
β2

(c− α2s)

 . (2)

where s = sinµ c = cosµ, the subscript 1 of the Courant-
Snyder parameters relates to an initial and 2 to a final states.

2 CIRCULAR BASIS

The simplectic basis which form is preserved by the
rotation-invariant transformations:

U =
1√
2



√
βc+

√
βs+ −

√
βc− −

√
βs−

−s+−αc+√
β

c+−αs+√
β

s−+αc−√
β

−c−+αs−√
β√

βs+ −
√
βc+

√
βs− −

√
βc−

c+−αs+√
β

s++αc+√
β

c−−αs−√
β

s−+αc−√
β

 .

(3)
∗ burov@fnal.gov

where c± = cos φ± s± = sinφ± with arbitrary phases
φ±. Similar, but not exactly same presentation of the circu-
lar modes was used by V. Lebedev and S. Bogacz [4]. A
great feature of this parameterization:
Under the rotation-invariant transformations (1) the circu-
lar set (3) is transformed similar to how the linear basis does
under the uncoupled mappings:

Ũ ≡ T · U(α, β, φ+, φ−) = U(α2, β2, φ+ + µ− θ, φ− + µ + θ) .
(4)

Any phase space vector x can be expanded over this ro-
tating basis:

x = U · a . (5)

a = (
√

2J+ sinχ+ ,
√

2J+ cosχ+ ,
√

2J− sinχ− ,
√

2J− cosχ−)
(6)

Taking the amplitudes from their definition (5), the actions
can be expressed in terms of 2D vectors of the offset and
transverse momentum 3r = (x, y) , 3p = (px, py):

J± = γ3r2/4 + α3r3p/2 + β3p2/4±M/2 (7)

where γ ≡ (1 + α2)/β and M = xpy − ypx is the CAM.
Note a similarity of this expression to the corresponding
formula in the uncoupled case.

Preservation of the circular actions J± under the invari-
ant mappings means that both their sum and difference are
preserved as well:

J+ − J− = M = const ;

J+ + J− = γ3r2/2 + α3r3p + β3p2/2 = const . (8)

Inverse expressions are found as

3r2/β = J+ + J− + 2
√
J+J− cosψ

3p2β = (J+ + J−)(1 + α2)+
2
√
J+J−(−1 + α2) cosψ + 4

√
J+J−α sinψ

3r3p = −α(J+ + J−) − 2
√
J+J−α cosψ − 2

√
J+J− sinψ

(9)
where ψ = φ+ +χ+ +φ−+χ−. When only one of the two
circular modes is excited (either J+ or J− is zero), then

3r2 = βJ , 3p2 = γJ , 3r3p = −αJ , M = ±J . (10)

3 ADAPTERS

Both uncoupled V and circular U (3) basic sets are sym-
plectic; therefore, they can be mapped on each other. Sym-
plectic transformations

C = U · V −1 and C̃ = V ·U−1 (11)
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map the uncoupled basis V on the circular basis U , and
back, respectfully. Note that the uncoupled-to-circular
transformation C maps the horizontal and vertical phase
spaces on the modes of opposite helicities. So the cor-
responding uncoupled and circular Courant-Snyder invari-
ants are equal:

Jx = J+ ; Jy = J− . (12)

Adaptive transformations are illustrated schematically
by Fig. 1.

4 IMPLEMENTATION OF ADAPTERS

A particular solution for the adaptive transformation [ Ya.
Derbenev]:

C = R(π/4)〈M,N〉R(−π/4) (13)

where 〈M,N〉 stands for a block-diagonal 4×4 matrix with
M and N as its 2× 2 diagonal blocks:

M =


√

β

β0
(cosφ0 − α0 sinφ0) −

√
ββ0 sinφ0

α0 cos φ0 + sinφ0√
ββ0

√
β0

β
cosφ0


(14)

and

N =


−

√
β

β0
(α0 cos φ0 + sinφ0) −

√
ββ0 cosφ0

cos φ0 − α0 sinφ0√
ββ0

−

√
β0

β
sinφ0

 .

(15)
The matrices M ,N are related as

N = F ·M F =
(

0 −β
1/β 0

)
. (16)

this particular adapter transforms initial uncoupled basis
(subscript 0) into a circular basis at its waist point (α = 0).

5 CIRCULAR EIGENMODES FOR A
SOLENOID

Circular eigenmodes of an extended solenoid: CS pa-
rameters remain constant, and only the phases run. The
solenoidal transformation:

Ts =R(−θs) · 〈Ts,Ts〉 (17)

with

Ts =
(

cos θs βs sin θs
−β−1

s sin θs cos θs

)
. (18)

Here θs = eBz/(2p0c) ≡ z/(2ρ) is the Larmor phase ad-
vance and

βs = 2c/(eB) (19)

can be referred to as the Larmor β-function. The Courant-
Snyder parameters of the circular basis with β = βs and
α = 0 are preserved inside the solenoid: the first pair of the
basis vectors turns by an angle ∆φ+ = θs + θs = 2θs and
the second pair by ∆φ− = −θs + θs = 0, i. e. remains
constant.

The canonical variables ã associated with these circular
modes describe the kinetic momenta

ky = py + x/βs kx = px − y/βs (20)

and coordinates of the Larmor center

dx = x/2− βspy/2 dy = y/2 + βspx/2 ; (21)

namely,(
ã1

ã2

)
=

√
βs
2

(
ky
kx

)
,

(
ã3

ã4

)
= −

√
2
βs

(
dx
dy

)
.

(22)
When the adapter C is matched with an adjacent down-

stream solenoid, i. e. α = 0, β = βs , the horizontal
degree of freedom of the incoming uncoupled beam trans-
forms into the cyclotron mode inside the solenoid, while the
vertical one transforms into the drift mode, and the emit-
tances are preserved:

ε2x ≡ 〈x2〉〈p2
x〉 − 〈xpx〉2 = ε2c ≡ 〈ã2

1〉〈ã2
2〉 − 〈ã1ã2〉2 =

= (4/β2)
(
〈k2
x〉〈k2

y〉 − 〈kxky〉2
)

ε2y ≡ 〈y2〉〈p2
y〉 − 〈ypy〉2 = ε2d ≡ 〈ã2

3〉〈ã2
4〉 − 〈ã3ã4〉2 =

= (β2/4)
(
〈d2
x〉〈d2

y〉 − 〈dxdy〉2
)

(23)
with the brackets 〈...〉 standing for an ensemble averaging.
For a particular case of the round beam inside the solenoid,
when 〈d2

x〉 = 〈d2
y〉 ≡ d2 , 〈dxdy〉 = 0 and similar momen-

tum relations, it yields

εx = βk2/2 , εy = 2d2/β . (24)

The solenoid with an opposite field switches mapping: the
horizontal degree of freedom is mapped onto the drift mode
and the vertical plane is mapped onto the cyclotron mode.

Similar relations take place for the reverse, circular-to-
uncoupled transformations C̃.

6 LOCAL ROTATION INVARIANCE

When the rotation invariance is local (continuous):

dβ

ds
= −2α

p0
,

dφ±
ds

=
1
p0

(
1
β
± 1

βs

)
. (25)

and

β′′ − β′2

2β
+

(γ′0β)′

β2
0γ0

+
2β
p2
0

(
1
β2
s

− 1
β2

)
− 2K
|Mm|

= 0 .

(26)
Here β0 and γ0 are the relativistic factors, p0 = mcβ0γ0 is
the total (longitudinal) momentum, Mm is the CAM of the

boundary particle with the offset rm and K =
2Ie

mc3β3
0γ

3
0

is the so-called generalized perveance, which takes into ac-
count the space charge.
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Figure 1: Schematic illustration of the uncoupled-to-circular beam adapter: horizontally and vertically polarized modes
are transformed into circular modes of opposite helicities. Blue and red dots represent particles with smaller or r actions.
Arrows on the circular mode portrets show particle momenta, proportional to the offsets. For simplicity, all the phase
portrets are depicted as circles; generally, tilted ellipses are mapped onto each other. Direction of external arrows =>
specify the direction of transformation. Reverse direction of both upper and lower arrows (<=) would correspond to the
reverse, circular-to-uncoupled adapter.

7 DIAGONALIZATION OF BEAM
MATRIX

The beam matrix

Σi,j = 〈xixj〉

describes the beam distribution. If M is a transfer matrix,
then the new Σ-matrix is MΣMT . The uncoupled state
is described by the block-diagonal Σ-matrix in the origi-
nal Cartesian coordinates; its 4D emittance is a product of
the 2D emittances. Normally the phase distributionsare ho-
mogeneous, in this case the Σ-matrix is diagonal in the
matched uncoupled basis (the transfer matrix in this case
M = V −1):

Σ = Diag(εx, εx, εy, εy), (27)

where Diag(...) is a diagonal matrix with elements listed as
the arguments. In the same way, the Σ-matrix of a round
beam is diagonal in the matched circular basis.

The Σ-matrix of a round beam can be expressed in
rotation-invariant terms:

Σ =
1
2

(
Σ 〈M〉J

−〈M〉J Σ

)
; Σ =

(
〈r2〉 〈3r3p〉
〈3r3p〉 〈p2〉

)
;

(28)

J =
(

0 1
−1 0

)
.

This beam matrix is diagonalized by the circular basis
with

β =
〈r2〉√

〈r2〉〈p2〉 − 〈3r3p〉2
, α = − 〈3r3p〉√

〈r2〉〈p2〉 − 〈3r3p〉2
(29)

leading to
Σ = Diag(ε1, ε1, ε2, ε2) (30)

with the emittances

2ε1,2 = ±〈M〉 +
√
〈r2〉〈p2〉 − 〈3r3p〉2 ≥ 0 . (31)
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These partial emittances are preserved by any symplectic
transformation.

The total 4D emittance is a product of these partial emit-
tances :

4ε ≡ 4ε1ε2 = 〈r2〉〈p2〉 − 〈3r3p〉2 − 〈M〉2 (32)

[S. Nagaitsev, A Shemyakin]. The 4D emittance in terms
of the canonical and kinetic momenta are absolutely identi-
cal: a transfer from one to another is equivalent to rotation
imposed on the beam as a whole, which does not change the
total emittance.

8 ROUND BEAMS FOR CIRCULAR
COLLIDERS

For circular colliders, round beams in the interaction re-
gion (IR) are known to be beneficial: angular momentum
preservation allows to increase the beam-beam tune shift
and so the luminosity. Conventional round-beams schemes
require εx = εy and νx = νy Another approach to
get the beams round, the Möbius accelerator [5], based on
beam rotator optics [6], is studied experimentally at CESR
[7]. This scheme also leads to emittance identity and effec-
tive tune degeneration:x the resulting normal tunes are in-
evitably separated by 1/2.

Matched adapters bounding the IR opens a way that is
free from all these limitations.

Skew Block Skew Block
IR

Uncoupled Beams Round Beams Uncoupled Beams

Figure 2: Beam Rounder

This beam rounder allows to have:

• round beam inside it;

• the same uncoupled beam outside it, as it was without
the rounder;

• rotation-invariant revolution matrix;

• all these features are kept for any tunes, emittances and
the solenoidal field inside.
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EXCERPTS FROM THE VLHC DESIGN STUDY – ACCELERATOR
PHYSICS ISSUES

M. Syphers, FNAL, Batavia, IL 60510, USA

Abstract
 A six-month design study for a future high energy

hadron collider was initiated by the Fermilab director in
October 2000.  The request was to study a staged
approach where a large circumference tunnel is built that
initially would house a low field (~2 Tesla) collider with
center-of-mass energy greater than 30 TeV and a peak
(initial) luminosity of 1034 cm-2 sec-1.  The tunnel was to be
scoped, however, to support a future upgrade to a center-
of-mass energy greater than 150 TeV with a peak
luminosity of 2x1034 cm-2 sec-1 using high field (~10
Tesla) superconducting magnet technology.  In a
collaboration with Brookhaven National Laboratory and
Lawrence Berkeley National Laboratory, a report of the
Design Study was produced by Fermilab in June 2001.[1]
The Design Study focused on a Stage 1, 20x20 TeV
collider using a 2-in-1 transmission line magnet and leads
to a Stage 2, 87.5 x 87.5 TeV collider using 10 Tesla
Nb3Sn magnet technology.

The article that follows contains excerpts from the
design study work that discuss accelerator physics designs
and computational results from the Study.  The author is
indebted to the other members of the Design Study who
contributed to this work, in particular to Steve Peggs.  A
complete list of contributors can be found in [1] and [2].

1 TWO COLLIDERS IN ONE TUNNEL
For the design study it has been envisioned that the

Low Field (LF) ring will be comprised of long, combined
function magnets -- the bending of the central trajectory
and the focusing of the particle beam will be performed
using gradient magnets with central field strength on the
order of 2 T.  The High Field (HF) ring will use separated
function magnets -- dipole magnets for bending the
central trajectory and quadrupole magnets for focusing.
Since the LF and HF designs have different focusing
characteristics, the dispersion suppressors must also be
designed simultaneously to ensure that the LF and HF
orbits line up appropriately when entering the long
straight sections for the Interaction Regions and Utility
Regions.

The  size of the arcs is determined primarily by the low
magnetic field of the first stage collider, while the lengths
of the major straight sections are determined by the high
magnetic rigidity of the beam in the second stage collider.
The interaction regions must be made long enough to
accommodate trajectory and optics manipulations of high
energy proton beams using reasonable guesses for sizes of
future high energy, high luminosity detectors.  The utility

straight section regions must be made long enough to
provide space for extracting a very high energy proton
beam toward a beam dump and for beam scraping and
beam instrumentation at high energy.  All of these
functions will be required for the LF collider as well, of
course, but the technologies used for injection, extraction,
acceleration, and so forth will be similar for the two rings.
Thus, the requirements of the HF design will set the scale
for the straight sections.

As indicated in Figure 1.1 each collider is made up of
two major arcs that connect two clusters of straight
sections.  At the outset, only one cluster region -- located
at or near the Fermilab site -- will be equipped with full
interaction region and utility region optics.  The opposite
cluster will have the same straight section lengths, but
optically will consist of simpler, FODO-type modules
where applicable, with the exception of a special straight
section designs to accommodate beam scraping and future
beam transfers between the LF and HF accelerators.
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Figure 1.1: Schematic layout of collider modules.  The
figure is not to scale, emphasizing the straight section
functions.

Dispersion suppressor modules are adopted following
the SSC design, which was also later used in the Fermilab
Main Injector.  A cell phase advance of 90 degrees has
been chosen for which a dispersion suppressor can be
made using two special cells, each 3/4 the length of a
standard cell and each containing 2/3 the bending of a
standard cell.  These modules reduce the periodic arc
dispersion function to zero at the output of two such cells.
The short bending regions between Interaction Regions
and Utility Regions will be composed of back-to-back
dispersion suppressor modules.  Any additional bending
required in these regions is generated by inserting
standard half-cells between the DS modules.

Table 1.1 lists the fundamental parameters of the
footprint. In the transition from Stage 1 to Stage 2
operation, the experiments will remain centered on the
same interaction points. At the same time it is envisaged
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that they will be upgraded to take up more space along the
beam line, increasing the distance from the IP to the first
magnet, L*, from 20 to 30 m.  It is therefore necessary to
allow for a bypass to keep the low field ring beams well
clear of the experiments.  This must be done without
changing the total low field ring circumference.

One advantage of modular construction is that low and
high field lattices are guaranteed to have almost identical
footprints, and therefore to fit in the same tunnel, so long
as corresponding low and high field modules are placed
on top of each other.  The maximum deviation is only a
few millimeters, easily allowing one ring to be placed on
top of the other at atunnel.

Table 1.1: Fundamental lattice parameters common to
both low and high field rings.

Circumference, C 233.037 km
Average arc radius, R 35.0 km
Number of interaction points 2
Half cell length, Lhc 135.486 m
Half cell bend angle, θhc 3.875 mrad
Half cell count 1720
Half cell harmonic, nλ 24
Bunch spacing (53.1 MHz), SB 5.645 m
Time between bunches 18.8 ns
Number of buckets 41280
Number of bunches, M 37152
Phase advance per cell 90.0 deg
Revolution frequency 1.286 kHz
Revolution period, T 0.778 ms
Harmonic number, h 371520
RF frequency (9 x 53.1) 478.0 MHz

2 STAGE 1 – THE LOW FIELD RING
The first stage low-field collider will have a top energy

of 20 TeV and peak (initial) luminosity of 1034 cm-2sec-1.
The collider will use the Tevatron as its injector operating
at a transfer energy of 900 GeV.  For this study a
transverse emittance of 1.5 π mm-mrad (rms, normalized)
is used, which is typical for the Fermilab Booster, though
about half the value at the Tevatron under recent normal
operations.  It is anticipated that with further Run II
experience, the efficiency of emittance preservation will
increase. Using the present acceleration systems of the
Tevatron injector chain, the collider has a bunch spacing
of 5.645 m (53.1 MHz), which sets the number of
available RF buckets.  With a 90% filling fraction to
allow for gaps in the beam for various kicker rise times,
the number of protons per bunch required in the Stage 1
collider is approximately 2.6 × 1010, similar to Tevatron
bunch intensities during previous Fixed Target operations.
Using an interaction region design with a β* = 0.3 m, we
arrive at the desired initial luminosity.  Table 2.1 lists the
general parameters of the Stage 1 collider.

Table 2.1: Nominal stores parameters for the low field
collider.

Storage energy 20 TeV
Peak luminosity 1034 cm-2sec-1

Packing fraction 89 %
Injection energy 0.9 TeV

Transverse normalized
emittance, rms (H&V, inject)

1.5 π µm

Initial bunch intensity 2.6 x 1010

Average beam current 195 mA
Stored energy per beam at
collision

3.0 GJ

Bend field at storage 2.0 T
Bend magnet gradient 9.0 T/m
Phase advance per cell 90.0 deg
Max RMS arc beam size
(inject)

1.2 mm

Bunch spacing (53.1 MHz) 5.645 m
Time between bunches 18.8 nsec
Bunch length 30 mm
Longitudinal emittance, rms
(inject)

0.4 eV-s

RF voltage at storage 50 MV
Fill time 60 min
Acceleration time 1000 sec
Beam size (rms) at IP
(storage)

4.6 µm

Total crossing angle (10σ
separation in drift space)

153 µrad

Distance from IP to first
magnet

21 m

β* at IP (H & V) 0.3 m
Maximum interactions per
crossing

20

Debris power at IP (each
direction)

3 kW

SYNCHCROTRON
RADIATION AT STORE
Energy loss per turn per
particle

38 keV

Radiation damping time, τ0 100 hr
(anti-damping in H plane)

Typical store parameter evolution is depicted in Figure
2.1.  The figure shows the proton bunch intensity and
luminosity decreasing due to collisions.  The vertical
emittance also decreases slightly due to synchrotron
radiation damping which occurs with a damping time of
about 100 hr.  Due to the use of gradient magnets in the
Stage 1 collider the horizontal emittance actually will be
anti-damped, and will increase at approximately the same
rate.  This should not be a problem since store times will
be much less than 100 hours.
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Figure 2.1: Evolution of collider parameters during a
typical store.

Interaction Regions

The final foci in the IR's are anti-symmetric triplets,
formed from single-bore, 300 T/m magnets. Four
additional quadrupole circuits, comprising double-bore,
70 T/m magnets, are also used in optical matching. With a
total of 6 independently-tunable quadrupole circuits
available it is possible to match the four β's and α's from
the IP to regular FODO cells, and hold the phase advance
∆µ constant across the IR through the squeeze from β* =
6.00 m → 0.30 m. Fixing ∆µ eliminates the necessity of a
special phase trombone to maintain the nominal operating
point. Figure 2.2 shows the lattice functions through the
IR during collisions.

The circulating beams are separated horizontally by 15
cm throughout the arcs and 70 T/m straight-section quads.
Four dipoles, 13.6 m each at 1.97 T, situated between the
Q3 and Q4 quadrupoles bring the beams together at the
entrance to the triplet for collisions at the IP. Dipoles
downstream of the IP separate the beams again and
channel them back into the inner and outer rings.  A half-
crossing angle of 77 µr at the IP gives 10σ  separation
between the beams at the first parasitic crossing.

Figure 2.2: IR lattice functions in the collision
configuration.

3 STAGE 2 – THE HIGH FIELD RING

The High Field VLHC ring will be the first cryogenic
collider to operate in the synchrotron radiation dominated
regime, in which the radiation damping time is shorter
than the storage time.  In this regime there are practical
and economic limits to the cryogenic system that can be
installed.  There is a maximum value P cryo for the
synchrotron radiation, which can be absorbed in each
ring.  It is necessary to adjust the beam parameters to stay
within the installed power limit, resulting in an average
luminosity that depends on the beam energy E according
to a “maximum power law,”

L
P

E N

T

Tave
cryo

IP tot store

<



















1 0

σ
Eq. 3.15

Although there is a clear advantage in reducing the
storage time, Tstore must remain significantly larger than
the damping time T0 in order to take advantage of
radiatively damped beam sizes.  Other factors (such as the
refill time) will also play a role in determining the
optimum value of Tstore , but it is safe to estimate that

T

Tstore

0 0 2≈ . Eq. 3.1

Except for some uncertainty in this factor, the
maximum power law clearly states that the installed
capacity to absorb synchrotron radiation at cryogenic
temperatures directly limits the attainable product of
average luminosity and energy.

Similarly, if the beam stored energy per ring U = NME
must be kept below a maximum value -- for example if
the beam dump has a limited capacity -- then

L
U

E N Tave
IP tot store

<

















max 1 1

σ
Eq. 3.2
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Insofar as the stored energy is a practical limit to high
field performance -- to the product LaveE -- then there is
pressure to reduce Tstore , and hence to increase the dipole
field, to reduce the circumference, and to reduce the refill
time.

Operational Performance

For the Design Study, the most straightforward
approach is to use as a baseline standard triplet optics and
round beams, as in previous hadron colliders.  It should be
noted, however, that the High Field ring will be the first
hadron collider with the potential to take advantage of
naturally flat beams.  While still under discussion, flat
beams are sufficiently new and interesting for hadron
colliders that most of the Stage 2 Design Study effort was
devoted to analyzing this case up to now.  The parameters
described below have assumed that the beam emittances
evolve into an asymmetric state characterized by κ = εy/εx.
The high field ring should be able to achieve κ << 0.1
during a store, consistent with conventional electron
storage rings.

Table 3.1:  Nominal parameters for stores in the high
field ring, using flat beams and doublet IR optics.

Storage energy, E 87.5 TeV
Peak luminosity, Lmax 2 x 1034 cm-2sec-1

Collision debris power,
per IP

73 kW

Dipole field at storage 9.765 T
Distance from IP to first

magnet
30 M

Injection energy 10 TeV
Fill time 30 sec
Acceleration time 2000 sec
Synchrotron radiation

damping time, T0

2.48 hours

Energy loss per turn, U0 15.3 MeV
Natu ra l  t r an sve r se

emittance (H)
0.0397 µm

Natural RMS momentum
width

5.5 10-6

Collision beta horz, β*
x 3.7 m

Collision beta vert, β*
y 0.37 m

Equilibrium emittance
ratio, κ

0.1

Initial bunch intensity, N 7.5 109

Beam current 57.4 mA
Synch. rad. power, per

beam, P
.88 MW

Dipole linear heat load 4.7 W/m
Stored energy, per beam,

U
3.9 GJ

The instantaneous luminosity is

L
M

T

N

x y x y

=
4

2

π
γ

ε ε β β* *
Eq. 3.3

where T is the revolution period.  The total number of
protons in the ring, MN, is approximately set by the need
to provide enough for “luminosity burn-off.”  Since the
number of bunches M is fixed, the need for a given peak
luminosity then sets the single bunch population N.
Nominal values for these and other parameters, including
a conservative value of κ = 0.1, are given in Table 3.1.

It is the head on beam-beam interaction that sets the
minimum horizontal emittance, whether the beams are flat
or round.  Figure 3.1 shows the horizontal and vertical
emittances decreasing to plateau values of εx and εy that
are consistent with the beam-beam limit, and which are
maintained by transverse beam heating.  Figure 3.2 shows
the corresponding evolution of instantaneous luminosity,
and its average, during the store.
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Figure 3.1: Evolution of the transverse emittances and
the rms momentum spread during a store.
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The Head-on Beam-beam Interaction

The horizontal and vertical tune shift parameters for bi-
Gaussian round beams (β*

x = β*
y, εx = εy) are

ξ ξ
π εx y

x

r N
= =

4
Eq. 3.4

By comparison, if the beams are very flat, κ << 1, then

ξ ξ
π εx y

x

r N
= =

2
Eq. 3.5

In this last expression, the horizontal and vertical beam-
beam parameters are made equal for the flat beam case by
asserting that the β* ratio is also κ:

κ
ε

ε

β

β

σ

σ
= = =y

x

y

x

y

x

*

*

*

* Eq. 3.6

Equations 3.4 and 3.5 show that, whether the beam is
round or flat, the beam-beam parameter depends only on
the horizontal emittance εx.  Since the collision beta
functions βx  and βy do not influence the beam-beam
parameters, they are adjusted (with a fixed ratio κ, and for
given values of M, N, and εx) in order to achieve the
required peak luminosity.

The beam-beam limit is expected to be approximately
the same for round or flat beams, given by

ξ ≤ 0.008.

This value is justified by practical experience at the
SPS and at the Tevatron.  The SPS operated at ξ ≈ 0.004
(or slightly higher) with 6 collisions per turn.  More
recently, in Run Ib the Tevatron operated with ξ ≈ 0.0075
with only 2 head on collisions per turn (as in the VLHC).
Simulations predict that radiation damping might give the
high field ring a slight additional advantage, which is by
no means as strong as that commonly observed in electron
storage rings.  The numerical value of 0.008 is illustrated
in Figure 3.3, which displays empirical data compiled by
Keil and Talman for electron storage rings [3].  The
“damping decrement” for the high field VLHC -- the
fraction of a damping period per head on collision -- is
approximately 10-7.

Then, re-writing Eqn. 3.3 as

L
M

T

N

x x

=
4

2

π
γ

κε β* Eq. 3.7

it is explicitly clear that with flat beams the value of β*
x

can be increased by a factor of about 1/κ, significantly
simplifying the optics.  Equation 3.6 then shows that the
value of β*

y
 is about the same for flat or round beams.
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Figure 3.3: Maximum beam-beam parameter vs.
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Crossing Angles and Parasitic Beam-beam
Collisions

The horizontal and vertical tune shifts due to a single
parasitic collision are

∆
∆

q
rN

x y
x y

,
,≈ ±

2 2πγ

β
Eq. 3.8

where the approximation is valid if the full beam
separation ∆ is much greater than both horizontal and
vertical beam sizes, so that the beam acts like a moving
line charge.

If the beams are thoroughly separated (into separate
beam pipes, or with very large separations) at a distance
Lsep from the IP, then there are 4Lsep/SB parasitic collisions
around each IP, where SB is the longitudinal bunch
separation.  The total tune shifts from all parasitic
collisions with crossing angle α in one interaction region
are

∆Q
rN

S

L
x y

B

sep

x y
,

,
*≈ ±

2
4

2πγ β α
Eq. 3.9

where the approximation is most valid if the beams are
fully separated before the first IR quadrupole.

Again, assuming one exercises the flat beam option, the
horizontal beta function at each collision is much less than
the vertical

β
β

β

β
κx

y

y

x

≈ =
*

*
Eq. 3.10

so that, taking Eqns 3.9 and 3.10 together gives
∆ ∆Q Qx y≈ −κ Eq. 3.11

The horizontal tune shift is greatly suppressed with flat
beams, to be much smaller than it is with round beams --
if the values of Lsep and α compare favorably between the
two cases.
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Advantages and Disadvantages of Flat Beams
All electron colliders, whether circular or straight, take

advantage of flat beams and use doublet optics.  However,
it has never before been possible to use flat beams in a
hadron collider.  Flat beams have the advantages and
disadvantages discussed below, which continue to be
investigated.

Flat beams require the first quadrupole on both sides of
the IP to be vertically focusing to both counter-rotating
beams (whether the crossing angle is vertical or
horizontal).  Thus, the optics must be symmetric across
the IP, and the first quadrupole must be a 2-in-1 magnet.
As seen in the next Section, both optical solutions have
been developed.

Table 3.2 compares the performance of flat and round
beam in the high field ring.  In both cases the beam-beam
limit of ξ = 0.008 is reached 5 or 6 hours into the store,
when the luminosity is at its peak.  The horizontal and
vertical emittances values recorded in Table 3.2 are those
that are initially maintained (preventing further emittance
shrinkage) when the horizontal and vertical beam-beam
parameters first saturate.  The same peak luminosity is
achieved in both flat and round beam cases by adjusting
the horizontal and vertical β* values.

Table 3.2:  Flat and round beam performance
parameters after about 6 hours into the store, just
after peak luminosity, when both horizontal and
vertical beam-beam parameters are saturated.

FLAT ROUND

Flatness parameter 0.1 1
Beam-beam parameter
ξx = ξy

0.008 0.008

Peak luminosity
(1034 cm-2sec-1)

2.0 2.0

Initial protons/bunch (109) 7.5 7.5
Collision beta horz β (m) 3.7 0.71
Collision beta vert β (m) 0.37 0.71
Max beta horz β (km) 7.84 14.58
Max beta vert β (km) 10.75 14.58
Horizontal emittance (µm) 0.161 0.082
Vertical emittance (µm) 0.016 0.082
Collision beam size horz

σ*
x (µm)

2.53 0.79

Collision beam size vert
σ*

y (µm)
0.25 0.79

Max beam size horz  σ*
x-max

(µm)
116 113

Max beam size vert  σ*
y-max

(µm)
43 113

Total crossing angle (µrad) 10.0 10.0
Separation distance (m) 30 120
Long range collisions per

IR
20 84

Long range tune shift (H) 0.0008 0.0166
Long range tune shift (V) 0.0081 0.0166

The value of the total crossing angle α  is set to be
identical with flat or round beams -- and is independent of
the plane of the crossing angle.  The major advantages
and disadvantages of flat beams are outlined in the list
below:

Flat Beam Advantages

Order of magnitude increase of β*
x , and subsequent

reduction of horizontal βmax in the doublet quadrupoles.
While early separation pushes the first quadrupole further
from the IP, the values of βmax , both horizontal and
vertical, are still reduced, as indicated in Table 3.2.

There are far fewer parasitic collisions per interaction
region with flat beams than with round beams, greatly
reducing the long-range (especially horizontal) tune shift.

Flat Beam Disadvantages

The design of the first quadrupole and splitting dipole
are difficult.  A 2-in-1 quadrupole with relatively close
separation will not have as good field quality a single bore
element.  But, with lower βmax in the doublet design, the
tolerable field errors are likely to be larger.

Neutral particles generated at the IP will aim head-on
for the conductor located at the center of the first 2-in-1
quadrupole.

Lack of energy flexibility may be a disadvantage to flat
beams.  At lower energies, damping times are longer and
thus flat beams are no longer viable.  (However, a lattice
has been demonstrated in which 4 IR quadrupoles can act
as a doublet or as a triplet [4].)

An operational disadvantage is the need for careful
tuning to keep the vertical emittance small.  Electron
rings, however, routinely achieve beam flatness in the
range 0.001 < κ  < 0.01 by controlling dispersion and
global betatron coupling.  Flatness values of κ ≈ 0.01
should be achievable.

A round beam solution for the VLHC is in hand,
including IR magnet designs and optical layouts.
Because of the difficult design of a 2-in-1 quadrupole
magnet for the doublet optics, the flat beam scenario is at
this time a promising upgrade path.  The flat beam case
with its possible advantages merits further work and
discussion and will continue to be studied over the
upcoming months.

Triplet IR Optics Approach

Using interaction region optics standard in modern
hardron colliders, collisions are created using anti-
symmetric triplets for the final focusing.  The “round
beam” model discussed here is qualitatively similar to the
low-field IR design.  The triplet quadrupoles are 400 T/m
single-bore magnets.  Four additional circuits, comprising
double-bore 400 T/m magnets are also used for optical
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matching.  With a total of 6 independently-tunable
quadrupole circuits available it is possible to match the
four β's and α's from the IP into the regular FODO cells,
plus hold the phase advance ∆µ constant across the IR
through the squeeze from β*  = 12.0 → 0.50 m.  Fixing ∆µ
eliminates the need for a special phase trombone
somewhere in the ring to maintain the nominal operating
point.  Figure 3.4 shows the lattice functions through the
insertion region at collision.

Figure 3.4: Lattice functions near the IP in collision
optics, using triplet focusing.

The circulating beams are separated vertically
everywhere in the ring, except in the triplet quadrupoles.
Four 10 T dipoles between the Q3 and Q4 quadrupoles
bring the beams together at the entrance to the triplet for
collisions at the IP.  Dipoles downstream of the IP
separate the beams again vertically and channel them back
into the upper and lower rings.  A half-crossing angle of
28.8 µr gives 10σ separation between the beams at the
first parasitic crossing 2.823 m downstream of the IP (εN =
1.5 π µm at 87.5 TeV/c).

Doublet IR Optics Approach

Doublet optics are more naturally suited to the flat
beams of the high-field ring.  The IR gives 30 m free
space from the interaction point to the first magnetic
element.  For the doublet optics, the first magnet
encountered is a high field small bore magnet of 16 T
field.  This can handle the beams until they total
separation becomes 8 mm.  Then the beams enter a lower
field, 12 T, magnet with a larger bore.  These beam
separation dipoles bend the beam vertically.  This
crossing region requires that the beam separation at the
first quadrupole be 30 mm.  With these dimensions the
first quadrupole is limited to 400 T/m gradient.  As the
beams separate, a higher quadrupole field can be attained
with a limit of 600 T/m.

With this design of the crossing region, two interaction
regions can fit in the on-site cluster region.  The β* can be
varied from 0.37 m to 7.12 m (vertically, β* horizontally is
10 times larger).  The maximum beta is 10.6 km with the

collision optics and only about 760 m at injection.  Figure
3.5 shows the collision optics of the interaction region.
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Figure 3.5: Lattice functions near the IP in collision
optics, using doublet focusing.
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Summary of the Session on Weak-Strong Phenomena

J.P. Koutchouk,CERN,Geneva,Switzerland

Abstract

ThissessiontookplaceJune26thin theafternoon,with the
participationof (by memory)Y. Alexahin,M. Boscolo,A.
Burov, J.P. Koutchouk,F. Schmidt,Y. Shatunov, V. Shilt-
sev, M. Syphers,T. Sen,M. Xiao, F. Zimmermann. The
chargeto this sessionasforeseenby theorganizerswas

� to review the presentunderstandingof the weak-
strongphenomenain general

� andmorespecificallythe performancelimitations of
theRunII of theTevatron,

� review, proposeandprioritize experimentscrucial to
RunII, LHC, CESRandVLHC.

1 INTRODUCTION

This summaryis organizedasfollows:

� Thetalksgivenin thesessionarebriefly summarized
togetherwith thediscussionswhich arose,

� An attemptis madeat comparingtheevolution of the
understandingandof the outstandingquestionsover
thelastfew beam-beamworkshops,

� A list of proposedactionsis submitted.

2 SUMMARY OF THE TALKS AND
DISCUSSIONS

2.1 VLHC Proposal, by M. Syphers/FNAL

Thisproposalis now anofficial FermilabdocumentFermi-
lab TM2149, June4th 2001andcanbe consultedon the
Web. The main featureof this proposalis a big tunnel to
houseinitially a 40 TeV machineandlatera 200TeV ma-
chine. Two experimentalpointsareforeseen.A selection
of parametersrelevantto thebeam-beameffect is givenin
Table1. Thebeamaspectratio at theIP’s (roundor flat) is

Energy TeV 40 200
Luminosity

������� �	�
�����
��

m .3 .71��� m .03 .08�
/IP � .003 .008

# LR interactions comparableto RunII andLHC
LR separation � 10
Raddamping hour many 1

Table1: A selectionof VLHC Parameters

not yet decided.As commentedby theauthor, theparam-
etersof thebeam-beaminteractionsin theVLHC proposal
arecomparableto thoseof Run II andLHC andactually
lessdemanding.

The recentfindingson Run II andLHC show however
thata long-rangebeam-beamseparationof 10 � is insuffi-
cient.Thismachineswill haveto leavewith this limitation.
It is recommendedto increasethis separationin a new de-
sign. The target value is presentlynot clear, perhapsas
largeas15 � .

2.2 Tracking for LHC, by F. Schmidt/CERN

Theissuesin trackingwith thebeam-beameffect is anac-
curatemodelof thephysicalphenomenaandtrackingover
long times. For LHC, thetrackingis carriedout in 6D ex-
cept for the b-b lenswhich is 4D. The tracking time has
beenincreasedfrom

�����
to
�����

turns(89 s in accelerator
time). The averagebeamseparationat the LR interaction
pointsis 14 � at injectionand9.5 � in collision. Themain
resultsaresummarizedin table2. Theconclusionsthatcan

Injection Collision
no beam-beam � 12 � 12
with beam-beam,

��� �
turns � 9 � 6

with beam-beam,
��� �

turns � 7 � 5
onsetof chaos 7 4.5

Table2: Dynamicaperturein LHC in �

bedrawn from thisstudyare:

� As alreadyobservedin formerstudies,thelong range
beam-beameffect is indeedthelimiting phenomenon.
It is significantly stronger than the machine non-
linearities.

� Thefew placeswherethebeamseparationis only 7 �
in collision doplay a significantrole.

� Thephenomenologyressemblesthatof a tunemodu-
lation. Particlesmaybe lost after

�����
turns,i.e. on a

long timescale.Whathappensafter
�
���

turns?

� With the nominalmachineparameters,the LHC dy-
namicaperturein presenceof thebeam-beaminterac-
tion might betoo small.

� The tune spreadat 12 � at injection due to the LR
interactionsis only 0.001. It is clearly uncorrelated
with thedynamicaperture.Theonsetof chaos,though
not alwayseasyto identify, seemswell correlated.



2.3 Tracking for Run IIa, by M. Xiao/FNAL

In Run
�

IIa, the numbersof bunchesis significantly in-
creasedto increasetheluminositywhile reducingthenum-
berof eventspercollision. Eachbeamis madeof 3 trains
of 12 bunches,i.e. 36 bunchesinsteadof 6 in Run I. The
tracking scenarioincludestwo head-oncollision and 70
long-rangeinteractions.The beamseparationis 10 � ex-
ceptat4 placeswhereit is only 6 � .

After discussionit appearsthat the trackingis 4D only.
This is OK for the footprints. For the dynamicaperture
however, without the synchrotronmodulation,its results
shouldbeinterpretedasoptimistic.Yet,thetrackingresults
show a drasticeffectof thelong-rangeinteractions:

� The footprint of the PACMAN bunchesis shiftedby
0.01.

� The LR interactionsincreasethe footprint by 60%
(comparableto LHC).

� Thedynamicaperturedecreasesfrom 12to 6 � at
�
���

turns(againcomparableto LHC).

� A tune diffusion is noticablefor amplitudefrom 2������� � onwards.

A crossingangle(4D, with beamslicing) improvesthe
dynamicapertureby 1 to 2 � , with somereductionof the
luminosity.

Altogether, althoughthephysicsis not exactly thesame
(thelong-rangeinteractionsarespreadin betatronphaseall
aroundtheTevatron),theLHC andRunIIa trackingresults
show significantsimilarities. In bothcases,thebeamsep-
arationof 10 � appearstoo small. The footprint criterion
which revealedto be the significantnon-linearparameter
for thehead-oncollisionsdoesnotholdin presenceof long-
rangeinteractions. The 4D on-momentumtracking does
not incorporatedispersion-relatedphenomenaanalysedin
thenext talk.

2.4 Synchro-betatron Coupling, by Y. Alex-
ahin/FNAL

This studyis analyticandthequantitative resultsbasedon
perturbationtheory. Threefamiliesof phenomenaarestud-
ied:

� The beam-beamchromaticity: due to the non-
vanishing dispersion at the long-range interaction
points, the chromaticity is perturbedby the residual
sextupolarfield of theexciting beam.Thechromatic-
ity spreadinducedby thePACMAN effect is aslarge
as14 units.This seemsto beprobablyjust acceptable
at theTevatron.

� Odd-orderresonancescloseto the nominal working
point areexcited.calculationsshow thatthe5th order
family togetherwith its synchrotronsatellitesoverlap,
creatingtheconditionof adiffusionof theparticlesin
thecoreof thebeam.

� The finite bunch lengthcausessynchrotronsatellites
of evenorderresonances(12thorder)to bebroadened.
Theresonancelinesremainseparatedwith theCu RF
system. The strongerSc RF systemcausesthe high
Qsresonancesto overlap.

Yuri advocatesto changethe nominal working point to
.685/.675to minimize the excitation of the 5th order res-
onances.Theothereffectsseemratherdrasticandlikely to
limit theperformancein RunII. Experimentaldatawill be
veryuseful.

2.5 Beam Rounder, by A. Burov/FNAL

This theoreticalstudyprovidesa convenientformalismus-
ing circularmodesto describethebeammotion. It canbe
usedto expressandenforcethe conservationof the angu-
lar momentum.In this way, roundbeamsmaybeprovided
at an interactionpoint from any emittanceratio. With this
new invariant,the motion is essentially2D wherethe dif-
fusionin amplitudeis minimized.

To support this approach,Y. Shatunov/Novossibirsk
showed tracking resultsfor the future VEPP 2000 in the
caseof beamsroundedby betatroncoupling. The blow-
up of the coreoccursat a significantly larger beam-beam
parameter.

3 EVOLUTION OF THE
UNDERSTANDING

3.1 Issues in Novossibirsk/1989

At this time, only the head-onbeam-beameffect was an
issue.
� Is

�"! �$# ���
possiblein only one IP?: Not an issue

anymore. Theultimatelimit seemson thesideof the
coherenteffects(seeJ.Shi in theSessionon coherent
effects).

� Thediffusionin thetails needto bestudiedandmea-
sured:still true.

� The correctionof the leadingbeam-beameffect (de-
tuning) by octupolesshould be studied. S. Tem-
nykh/CESRmentionsthat this was donewith some
successin electronmachines. For protons,the new
ideasof an electronlens or a wire compensatorare
clearlysuperior.

3.2 Issues in Montreux/1995
� Matching the beamsizesis more important than a

residualbeamseparation: this statement(from ex-
perience)seemsnot consistentwith observationsre-
portedin Geneva/1999.Clearexperimentalevidences
of theconsequenceof aresidualseparationareneeded
(PACMAN bunches).

� Strong diffusion observed in HERA for amplitudes
above2 � : Thatwasnot beam-beam.



� Long-rangeat LHC: the SPSfootprint criterion was
consistentwith abeamseparationby only 1 � .

3.3 Issues in Geneva/1999
� TheLR interactionsareidentifiedto bethemajorper-

formancelimit.

� Standardizationof thesimulationcode:It is notedthat
it is impossibleto comparetrackingresultswith many
codesand as many input conventions. It is still the
casewith no prospectin thisdirection.

3.4 Issues for this Workshop

It is quiteclearthat the hadroncollidersenteredthe long-
rangeinteractionerawhich appearsmuchmoresignificant
thananticipated.

In electronmachines,themain issueis thetrade-off be-
tweenflat androundbeams.

4 PROPOSED ACTIONS

We proposeherea list of actionsrelatedto themainissues
of this workshop.

� Footprintdueto thelong-rangeinteractions:a simple
start to comparecalculationsandmeasurementsand
gainconfidence.

� Phenomenologyassociatedto the long-rangeinterac-
tions: Gatheringof data:(lifetime, background,diffu-
sion)versus(LR separation,numberof LR’s, tunes)

� PacmanEffect: bunch-by-bunchmeasurementsof or-
bits, tunes,coupling,chromaticity, luminosity: is the
effect asexpected?how to handleall thesedata?use-
fulness.

� measurementof synchro-betatroncoupling versus
Xing anglewith andwithoutLR’s.

Thisseriesof experimentsis particularlysuitableto RunII.

� Effect of a residualseparationat theIP: whatis toler-
able?This experimentcouldbecarriedout at RHIC.

� Compensationof theLR effect. Theprogressat Fer-
milab with theelectronlensis significantandfurther
experimentsareof large interestfor the community.
The ‘pulsedwire’ methodis understudyat Cern. V.
Shiltsev/FNAL proposesto test the idea(asmuchas
possible)at the Tevatron. This is very muchencour-
aged.

� Flat versusround beams(for electronsbut as well
hadrons): The studieson the Moebiusmachineare
plannedto be resumed. S. Temnykh challengesthe
communityto help in finding a chromaticitycorrec-
tion schemewhich works in this machine. When
VEPP2000will beready, it will beanexcellentplace
to studythis issue.

� The reporton the progressin understandingDaphne
wasveryinterestingandthecommunityis lookingfor-
wardto hearaboutthedevelopments.

� Beamrounder:theconceptis very interesting.Track-
ing andresonancecalculationsarenecessaryto eval-
uatethe robustnessof the schemeversusthe imper-
fectionswhich cannotbe avoided in a real machine.
Thesenumericalstudiesareencouraged.

5 CONCLUSION

The beam-beamexperimentsaregenerallynot very pop-
ular. They require long study sessions.Given the com-
plexity of the problem,their conclusionsmay be ambigu-
ous. Nevertheless,the performanceof new colliders are
limited by new issues(hadronsor electrons)with hardware
consequences(Xing angle,Correctionsschemes,focusing
doubletsversustriplets). It becomesthereforenecessaryto
launcha significantexperimentalstudyprogrammeto im-
prove the understandingandexploit the new ideaswhich
areemerging.
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SELF-CONSISTENT ORBITS WITH BEAM-BEAM EFFECT IN THE LHC

H. Grote and W. Herr, CERN, Geneva, Switzerland

Abstract

In part of the straight sections of the LHC the two beams
share a common beam tube. Therefore the bunches cross
each other not only at the interaction point, but as well at
many places on either side, with a typical transverse separa-
tion of 10 times the transverse beam size. These ”parasitic”
encounters lead to orbit distortions and tune shifts, in addi-
tion to higher order effects. Since the string of bunches
from the injection machine contains gaps, not all possi-
ble 3564 ”buckets” around the machine are filled, but only
about 3000. This in turn causes some bunches to not always
encounter bunches in the opposite beam at one or several
parasitic collision points (so-called ”pacman” bunches),
or even at the head-on interaction point (”super-pacman”
bunches). With a special program self-consistent orbits in
the LHC have been calculated for the first time with the full
beam-beam collision scheme resulting from various injec-
tion scenarios [1]. The offsets at the interaction points, and
the tune shifts are shown to be small enough to be easily
controlled.

1 INTRODUCTION

In the LHC [2] the two opposite beams share a common
beam tube for roughly 50 m on either side of the four in-
teraction points. Since the bunch spacing is only 7.5 m, in
order to avoid unwanted head-on collisions the beams cross
with an angle. Even so, in addition to the one head-on en-
counter at each interaction point there remain 15 positions
on either side of it where the closed orbits at nominal en-
ergy are only about 10 σ apart, and even less in the focusing
quadrupoles at either side of each interaction point. Various
effects (alignment errors, field errors, momentum errors,
imperfect injection, beam-beam kicks) may lead to signif-
icant orbit distortions and further distance reduction. Be-
cause of “holes” in the filling scheme the situation differs
from bunch to bunch. The principal effects on the bunches
caused by the beam-beam encounters are tune shifts and
orbit offsets at the interaction points. The former are po-
tentially dangerous because they may shift the tune of a
bunch onto a resonance which may lead to its loss; the
latter reduce the luminosity, and the offset at the head-on
collision creates an extra orbit kick that adds to the distor-
tions already present. Further possible causes for worry are
changes in the chromaticity, non-zero dispersion at the in-
teraction point, odd order resonances, and possibly higher
order effects. The aim of the current study was therefore to
see whether acceptable closed orbits exist for all bunches in
both beams, whether the coherent tune shifts remain small
enough to be of no concern, and the other effects mentioned
can be corrected if necessary. The study provides as well

input for the layout of the correction system in that it gives
typical values for orbit errors caused by beam-beam effects.

The results are presented in graphical form because of
the large number of bunches. The bucket number for ring-
1 is constructed as follows: bucket number zero is at IP5,
bucket number one to the left of it (seen from top), number
two further to the left and so on backwards through IP4,
IP3, IP2, IP1, IP8 etc. until to the right of IP5. The beam
rotates clockwise. For ring-2 the numbering is done from
IP5 to the right, the beam rotates anti-clockwise.

2 BUNCH FILLING SCHEME

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 119 × 0

Whatever the bunch filling scheme, as long as it is the
same for both rings, and the injection is symmetric to IP1
and IP5, every bunch in ring-1 will collide with a bunch in
ring-2 (and vice versa) at IP1 and IP5. For this to be true
as well at IP2 and IP8, the following condition has to be
fulfilled:

The distance from IP to IP is 891 half-buckets (bunches
collide every half-bucket since both beams move) except
for IP8 which is 888 from IP7 and 894 from IP1. The rea-
son is the longitudinal displacement of IP8 with respect to
the symmetry point. If the injection scheme repeats itself
every 891 buckets, then at all IPs a bunch will always meet
a bunch. Therefore super-pacman bunches are created at
IP8 due to this displacement. The filling scheme shown
here respects this symmetry almost fully, only at the end a
batch of 72 bunches is missing to allow for the risetime of
the beam dump kickers, creating super-pacman bunches at
IP2 and IP8. In symbolic form it can be written as above (1
means bunch present, 0 absent).

3 ALGORITHM

The calculations are performed with two programs, MAD
[3] and TRAIN, the latter being a heavily modified version
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of the program TRAIN [4] developped for LEP. Both pro-
grams communicate via a database DOOM.
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Figure 1: Horizontal offset at IP1 for all ring-1 bunches.
The offset in caused exclusively by beam-beam interac-
tions. The spread is about 1/10 of the beam size.

For the results presented here, a thin-lens model of the
LHC version 6.0 was used, containing the latest separation
and crossing schemes of version 6.1 [5], [6]. In the first
step, the two LHC lattice and optics files are prepared for
the TRAIN program: the lattice file for LHC ring-1 is read,
the crossing and separation bumps are matched, tunes and
chromaticities are adjusted, the places of head-on and para-
sitic encounters are marked, and the second order maps be-
tween all these beam-beam interaction points are lumped.
This is justified since the optics under study contains only
dipoles, quadrupoles, and sextupoles; field and alignment
errors are not present. The Twiss parameters, element, lat-
tice, force, and map tables are then stored in DOOM. The
same procedure is followed using a matched thin-lens ver-
sion for ring-2. At the end of this step, then, the database
contains the necessary information for both rings to per-
form the self-consistent orbit finding.

This second step is performed by the program TRAIN.
It first reads the description of the two rings from the
database, and in particular the number and position of all
beam-beam encounters. It then reads the injection sched-
ule from an independent file and establishes the ”encounter
list” for all bunches in both beams. Next the program finds
an initial closed orbit from the linear one-turn matrices with
beam-beam encounters switched off. The program then it-
erates in a double loop over all bunches in both rings, with
beam-beam encounters switched on. Where which bunch
meets which bunch in the other ring is known from the
bunch filling scheme. The inner loop is iterated with fixed
distances between bunches at the beam-beam encounters,
i.e. fixed beam-beam kicks. When it has converged to
closed orbits for all ring-1 and ring-2 bunches, then the
bunch positions at the beam-beam encounters are updated,
and the outer loop is iterated until these positions do not
change anymore. The bunch sizes are kept fixed as calcu-

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
bucket number

−0.2

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

ho
riz

on
ta

l o
ffs

et
 [µ

m
]

Figure 2: Detail of Figure 1. The 15 pacman bunches at
either end of each bunch packet of 72 bunches can clearly
be seen. The small irregularities are caused at IP2 and IP8.

lated from the undisturbed beta-functions, their change in
size is negligible. Once all orbits (i.e. their six-dimensional
initial coordinate vectors) are known, each bunch pair is
tracked with the second order maps to get the tunes, chro-
maticity, and dispersion. The total CPU time for 2808
bunches in each beam is of the order of a few minutes on a
fast workstation (e.g. Pentium III).

4 COHERENT TUNES, CHROMATICITY,
LUMINOSITY, AND DISPERSION

0.300 0.302 0.304 0.306 0.308 0.310 0.312 0.314 0.316 0.318 0.320
tune

0.0

1000.0

2000.0

3000.0

en
tr

ie
s

Figure 3: Solid: horizontal (left) and vertical tunes for all
2808 bunches in ring-1. The two offset bumps belong to-
gether. They represent the 186 super-pacman bunches oc-
curing at IP8. Dashed: tune spread resulting from a Gaus-
sian beam current distribution.

The coherent horizontal and vertical tunes for all
bunches are shown in Figure 3. The offset batch stems from
the super-pacman bunches at IP8; IP2 has practically no ef-
fect since there the beams are separated by about 4σ. The
offset of the normal bunches is as expected, i.e. roughly
−3 × 0.00342/2 = −0.0051 (the undisturbed fractional
tunes are 0.31 and 0.32, respectively). When the bunch
currents in both rings have a Gaussian distribution rather
than being equal as in the results presented up to now, this
has very little effect on the orbit offsets, since they are
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caused by over one hundred parasitic encounters and are
thus averaged; however, there is a visible effect on the co-
herent tune shift which is caused by the head-on collisions
only, of which there are up to three (the separation of 4σ at
IP2 makes this head-on collision insignificant for the tune
shift). Figure 3 shows the coherent horizontal tune shift
resulting from a Gaussian bunch current distribution with
σ = 0.2 cnom (cnom = 0.189 [mA] is the nominal bunch
current). The spread doubles with respect to the case with
fixed beam current, but is still within ±2 × 10−3 which is
not dramatic. Bunch current variations of this order can
therefore be tolerated, provided there are no other effects
not studied here that give reasons for concern.

The change in the dispersion is below 1 mm for all
bunches. The luminosity resulting from the offset at the
collision points lies between 0.98 and 1 without correction.
When the average offset (see Figure 2) is corrected, the
overall luminosity drops by less than 0.001.

The horizontal and vertical chromaticity without beam-
beam effect were adjusted to 1.6 and 1.8, respectively. The
chromaticities with beam-beam effect are given in Figure
4. This effect can be tolerated since the range of acceptable
chromaticities is between one and two.
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Figure 4: Horizontal (black) and vertical chromaticities for
bunches in ring-1.

5 OTHER APPLICATIONS

The program TRAIN has some very important applications
in the definition of LHC parameters. Various different fill-
ing schemes have been proposed, mainly to optimize the
number of bunches and therefore the luminosity. However,
possible implications of the filling scheme on the beam dy-
namics, in particular on the beam-beam induced orbits have
been ignored or estimated on an averaged basis. This pro-
gram now allows to test the different proposals and chose
the most suitable one.

5.1 Test of alternative filling schemes

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 48 × 1 126 × 0

The bunch filling scheme defined above can provide
the largest number of bunches (2856), but does not any
more exhibit a fourfold symmetry, but rather a ten fold
symmetry. That does not match the periodicity of the
LHC layout and, although the luminosity is highest in the
interaction points 1 and 5, the symmetry is strongly broken
by interactions points 2 and 8, leading to a much more
irregular structure. In particular the number of bunches
missing head-on collisions is largely increased. This is
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Figure 5: Closed orbit along bunch structure in the LHC.
No fourfold symmetry.
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Figure 6: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. No fourfold symmetry.

shown in Figs.5 and 6. Most important, it is difficult to
identify nominal bunches (see Fig.6). This bunch filling
scheme was discarded following these studies.

5.2 Effect of bunch to bunch intensity variations

Another effect can easily be studied using the TRAIN pro-
gram. It allows to assign individual bunch intensities to
all bunches of the train. The presently assumed bunch to
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bunch variation is about 20%. The result of the calcula-
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Figure 7: Closed orbit along bunch structure in the LHC.
20% intensity variation between bunches.
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Figure 8: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. 20% intensity variation between
bunches.

tion is shown in Figs.7 and 8. Although the orbits are now
all different for the originally nominal bunches, the varia-
tion is small (1 - 2% of the beam size).

6 CONCLUSIONS

The self-consistent bunch orbits presented here for the lat-
est bunch filling scheme allow the following conclusions
which of course concern only the closed orbits for zero
phase-space amplitude, and not any other parameter such
as long-term stability, lifetime, emittance blow-up, dy-
namic aperture etc.:

• The bunch offsets lie within±0.1σ at the physics col-
lision points

• The effects on other parameters (tune, chromaticity,
dispersion) are small, and their shifts can easily be
corrected (not their spread)

• The algorithm allows to evaluate and decide on filling
schemes

• The effect of bunch to bunch intensity variations can
be studied
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Beam Sizes in Collision and Flip-Flop States at KEKB

F. Zimmermann, CERN, Geneva, Switzerland

Abstract

Evaluating a simplified linear model of the beam-beam
interaction, self-consistent horizontal beta functions, emit-
tances and beam sizes are computed for the two unequal
colliding beams in KEKB. For head-on collisions only one
equilibrium solution exists at the nominal tunes. However,
if for off-center collisions the quadrupolar component of
the beam-beam force becomes defocusing, we obtain two
solutions, one of which describes a flip-flop state with in-
creased size of the positron beam. This result may explain
observations of sudden luminosity drops.

1 INTRODUCTION

During KEKB operation drops in the luminosity are ob-
served, which are associated with step changes in the hor-
izontal and/or vertical beam sizes at the interaction point
(IP) [1]. Often the LER horizontal beam size increases.
Changes in the beam size appear to be correlated with small
orbit variations. In particular, a hysteresis is observed when
the beam-beam separation at the collision point is varied.
In this report, we study a simple linear model of the self-
consistent horizontal optics and emittances for the two un-
equal colliding beams, evaluate their dependence on the be-
tatron tune and the beam-beam tune shift, and demonstrate
the existence of flip-flop solutions for off-center collisions.

2 SELF-CONSISTENT OPTICS AND
BEAM SIZES

In collision, the beam emittance and beta functions are
changed by the focusing force of the opposing beam. Ne-
glecting the change in the other beam (weak-strong approx-
imation), the horizontal dynamic beta function, βx,1(2), at
the collision point is usually obtained as [2]

bx,1(2) ≡
βx0,1(2)

βx,1(2)
=

sin 2π(Q1(2) + ∆Q1(2))
sin 2πQ1(2)

(1)

where

Q1(2) + ∆Q1(2) =
1

2π
arcos

(
cos 2πQ1(2)

−2πξ0,1(2) sin 2πQ1(2)

)
(2)

and Q1(2) denotes the unperturbed horizontal betatron tune
of beam 1 (or beam 2). The subindices 1 and 2 refer to the
electron (HER) and positron beam (LER), respectively; the
subindex ‘0’ signifies the values of beta function and emit-
tance without the focusing effect of the opposing beam.

Table 1: Parameters relevant to the flip-flop analysis.

variable HER LER
hor. beam-beam tune shift ξx 0.049 0.055
vert. beam-beam tune shift ξy 0.025 0.037
hor. tune 44.520 45.505
vert. tune 41.587 43.575
hor. beta function βx0 63 cm 59 cm
vert. beta function βy0 0.7 cm 0.7 cm
vert. beam-beam tune shift ξy 0.025 0.037
single-bunch current 0.48 mA 0.63 mA

The parameter ξ0,1(2) is the horizontal beam-beam tune
shift, calculated from the unperturbed beta functions and
emittances,

ξ0,1(2) ≡
N2(1)r0

2πγεx0,2(1)

βx0,1(2)

βx0,2(1)
, (3)

where r0 denotes the classical electron radius. For the
parameter values of KEKB, summarized in Table 1, the
(inverse) normalized dynamic beta functions evaluate to
bx,1 = 2.40 and bx,2 = 4.78.

Since the actual beam-beam tune shift, ξ1,2, depends on
the dynamic beta function, Eq. (1) does not describe a self-
consistent solution of the problem. Neither can it account
for flip-flop phenomena or for the simultaneous existence
of more than one equilibrium state. The flip-flop effect
with linearized beam-beam force for round beams was re-
cently analyzed by A. Otboyev and E. Perevedentsev [3],
who computed self-consistent beta functions and equilib-
rium emittances. We here follow and extend their formal-
ism, and then apply it to the KEKB case of flat beams with
unequal parameters. For simplicity, we limit the discus-
sion to the horizontal plane, in which flip-flop effects are
frequently observed.

The basic equations governing the evolution of the beta
functions are [3]

b21 = 1 + 2c1x1
b2
e2
− x2

1

b22
e2
2

(4)

b22 = 1 + 2c2x2
b1
e1
− x2

2

b21
e2
1

(5)

were c1(2) ≡ cot(2πQ1(2)), b1(2) ≡ βx0,1(2)/βx,1(2),
x1(2) ≡ 2πξ0,1(2), and e1(2) ≡ εx,1(2)/εx0,1(2).

Figure 1 displays the graphical method [4] of solving
Eqs. (4) and (5). Plotting the two curves b1(b2) and b2(b1),
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solutions to (4) and (5) are given by their intersections. As
can be seen, for the parameters considered and for constant
emittances, e1 = e2 = 1, there is only one intersection and,
hence, no flip flop is expected. Figure 2 shows an equiva-
lent picture obtained by neglecting the quadratic terms in
(4) and (5). The difference to Fig. 1 is insignificant.

Figure 1: Graphical solution of the complete Eqs. (4)–(5)
for constant emittances, e1(2) ≡ εx,1(2)/εx0,1(2) = 1. Plot-
ted is the variation of the inverse electron beta function,
b1 = βx0,1/βx,1, as a function of the inverse positron beta
function, b2 = βx0,2/βx,2, for the parameters of Table 1.

Figure 2: Graphical solution of Eqs. (4)–(5), considering
only the terms proportional to c1(2)x1(2), for constant emit-
tances, e1,2 ≡ εx,1(2)/εx0,1(2) = 1. Plotted is the varia-
tion of the inverse electron beta function, b1 = βx0,1/βx,1,
as a function of the inverse positron beta function, b 2 =
βx0,2/βx,2, for the parameters of Table 1.

If the beams collide with a horizontal offset, the
quadrupolar component of the beam-beam force may
change sign. Figure 3 shows the graphical solution for an
unperturbed beam-beam tune shift parameter ξ0 equal to
−1/4 times the nominal value. Still there is only one inter-
section.

Next we include the variation in emittance. Following
Ref. [5], or ignoring the oscillatory term in the solution

Figure 3: Graphical solution of Eqs. (4)–(5) for constant
emittances, e1,2 ≡ εx,1(2)/εx0,1(2) = 1, assuming a neg-
ative beam-beam tune shift ξ0,1(2) = −0.25ξnom

0,1(2), where
ξnom
0,1(2) represents the nominal value listed in Table 1. Plot-

ted is the variation of the inverse electron beta function,
b1 = βx0,1/βx,1, as a function of the inverse positron beta
function, b2 = βx0,2/βx,2.

of Ref. [3], the emittance changes with the strength of the
beam-beam focusing according to

e1(2) =
1 + p1(2) cot 2πQx,1(2)√

1 + 2p1(2) cot 2πQx,1(2) − p2
1(2)

, (6)

where e1(2) ≡ εx, 1(2)/εx0,1(2) and p1,2 ≡
x1,2b2,1/e2,1/b1,2. This equation is illustrated in Fig. 4.

Figures 5 and 6 shows a more precise SAD computation
of the dynamic emittances and beta functions as a function
of the beam-beam tune shift, provided by H. Koiso, which
accounts for the exact ring optics. The emittance variation
in Fig. 5 agrees within 10% with the simplified estimate of
Eq. (6) and Fig. 4.

Figure 4: Horizontal emittance e1,2 in the high energy and
low energy ring as a function of beam-beam parameter ξ 1,2,
for constant values of b2,1 = e2,1 = 1, according to Eq. (6).

From Figs. 4 and 5, we approximate the dependence of
the horizontal emittances on the beam-beam lens by the
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Figure 5: Dynamic emittance in units of the unperturbed
emittance, e1,2, as a function of beam-beam tune shift for
the low and high-energy rings of KEKB, computed by
SAD. (Courtesy H. Koiso)

Figure 6: Horizontal beta functions β1,2/β0,1,2 ≡ 1/b1,2
as a function of beam-beam tune shift for the low and
high-energy rings of KEKB, computed by SAD. (Courtesy
H. Koiso)

linear relations

e1 ≈ 1 + k1x1
b2
b1e2

, (7)

e2 ≈ 1 + k2x2
b1
b2e1

, (8)

where, for the nominal tunes (subindex 0), k1 = k0,1 ≈
1.3, and k2 = k0,2 ≈ 4.6. The reason why the values
of k0,1 and k0,2 are so different is that in the LER the hori-
zontal tune is much closer to the half integer resonance (see
Eq. (6) and Table 1). Note that the equation for e 1(2) also
contains the beta function b1(2), which is an extension of
the formulae in Ref. [3] that naturally follows from Eq. (6)
inserting the definitions of p1,2 and x1,2. Equations (7) and
(8) are approximations, which could be refined in future
studies.

We can solve the two equations (7) and (8) for e1,2:

e1 =
1
2

(
1 + k1x1

b2
b1
− k2x2

b1
b2

)

+

√
1
4

(
1 + k1x1

b2
b1
− k2x2

b1
b2

)2

+ k2x2
b1
b2
,

e2 =
1
2

(
1 + k2x2

b1
b2
− k1x1

b2
b1

)

+

√
1
4

(
1 + k2x2

b1
b2
− k1x1

b2
b1

)2

+ k1x1
b2
b1
.

Inserting these expressions into Eqs. (4) and (5), we may
once again use the graphical method to determine the re-
maining two unknowns b1 and b2.

Figure 7 shows the solution for the nominal parameters
of Table 1. There is only one intersection, which indicates
a unique equilibrium. The curves look similar to those in
Fig. 1, which were computed for constant emittances.

Figure 7: Graphical solution of Eqs. (4)–(5) for emittances
that vary linearly with the strength of the beam-beam force
as in Eqs. (7) and (8). Plotted is the electron beta function,
b1 = βx0,e/βx,e, as a function of the positron beta function,
b2 = βx0,p/βx,p, for the nominal parameters of Table 1.

The situation changes dramatically, if we invert the sign
of the beam-beam tune shift, in order to model a situation
with off-center collisions. Figure 8 illustrates a typical ex-
ample, where we consider an unperturbed tune shift equal
to −0.25 ξnom

0,1(2). In this case there are two intersections,
i.e., two solutions. This is quite different from the result for
constant emittances in Fig. 3. One of the two solutions rep-
resents a large increase of the positron beta function (small
value of b2), possibly consistent with the observed flip-flop
state.

The self-consistent beta functions and emittances de-
pend on the tunes of both beams. Figures 9 and 10
illustrate the dependence of the normalized beam sizes
σx,1(2)/σx0,1(2) =

√
e1(2)/b1(2) on the tunes in either ring,

respectively, for the nominal beam-beam tune shift. In this
calculation, we have approximated the variation of the co-
efficients k1 and k2 in Eqs. (7) and (8) with the tunes Q1,2
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Figure 8: Graphical solution of Eqs. (4)–(5) assuming a
negative beam-beam tune shift ξ0,1(2) = −0.25ξnom

0,1(2), for
emittances that vary linearly with the strength of the beam-
beam force as in Eqs. (7) and (8). Plotted is the electron
beta function, b1 = βx0,e/βx,e, as a function of the positron
beta function, b2 = βx0,p/βx,p.

as

k1(2) ≈ k0,1(2) cot(2πQ1(2))/ cot(2πQ0,1(2)). (9)

Figure 9: Self-consistent horizontal beam sizes σx/σx0 as
a function of the positron tune (right). The positron tune is
set to 0.505.

An offset between the two beams at the collision point
distorts the closed orbit, introduces a change in the linear
focusing, and excites additional higher-order resonances.
As indicated earlier in this paper, we only consider the
variation in the quadrupolar focusing force, and approxi-
mate the change in the focusing due to a varying beam-
beam separation by a common multiplication factor M ξ for
the two beam-beam tune shift parameters. This is based
on the assumption that a small beam-beam offset reduces
the strength of linear focusing experienced at the collision
point by a similar factor for either beam, provided the sizes
of the two beams are equal (note that they will not remain
equal once a flip-flop state is established). For larger off-

Figure 10: Self-consistent horizontal beam sizes σx/σx0 as
a function of the positron tune. The electron tune is set to
0.520.

sets, the beam-beam focusing force changes sign, which
we model by a negative value for Mξ.

Figures 11–13 illustrate the dynamic variation of beta
function, emittances and beam sizes as a function of a pos-
itive multiplication factor Mξ. The beta functions decrease
more strongly than the emittances increase as a function
of the beam-beam tune shift, such that the IP beam sizes
shrink for higher current. Equivalent results for a negative
multiplication factor Mξ are shown in Figs. 14–16. Consis-
tent with Fig. 3, in the latter case two solutions coexist. The
additional solution appears to be of the flip-flop type. It is
characterized by a large increase in the LER IP beta func-
tion (Fig. 14), a decrease in the emittance (Fig. 15) and a
resulting net growth of the IP beam size (Fig. 16).

A tentative explanation of the observed hysteresis may
then be the following. For a sufficiently large beam-beam
offset of about 2σx, the ‘quadrupolar’ component of the
horizontal beam-beam force changes sign, i.e., the force be-
comes defocusing instead of focusing, and there emerges a
new equilibrium, which represents a flip-flop state. There-
fore, repeated changes in the sign of ξ — due to vary-
ing beam-beam separation —, might induce transitions be-
tween the different solutions that exist for ξ < 0.

3 CONCLUSIONS

Calculations of horizontal equilibrium sizes for head-on
colliding beams at KEKB suggest the existence of a unique
equilibrium solution. If the beams are horizontally sepa-
rated sufficiently far that the ‘quadrupolar’ component of
the beam-beam force is defocusing, two self-consistent so-
lutions coexist, one of which describes a flip-flop state, in
which the positron beam is blown up. This appears consis-
tent with some of the observations.

Our analysis was based on a simplified model, which
considers only the horizontal plane, a linearized beam-
beam force, a linear dependence of the emittance on the
beam-beam tune shift, and a common scale factor for both
beam-beam parameters representing the effect of a trans-
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Figure 11: Self-consistent dynamic beta functions
β1,2/β0,1,2 ≡ 1/b1,2, as a function of a common posi-
tive multiplication factorMξ for both tune shift parameters.
This multiplication factor is intended to model a change in
linear focusing arising from a beam-beam offset. The tunes
are set to 0.520 (HER, e−) and 0.505 (LER, e+), respec-
tively.

Figure 12: Self-consistent dynamic emittances e1,2 ≡
ε1,2/ε0,1,2, as a function of a common positive multipli-
cation factor Mξ for both tune shift parameters. This mul-
tiplication factor is intended to model a change in linear
focusing arising from a beam-beam offset. The tunes are
set to 0.520 (HER, e−) and 0.505 (LER, e+), respectively.

verse offset. All of these approximations could be im-
proved. Future extensions might also include the vertical
plane, bunch length and crossing angle, as well as the non-
linear components of the force including an arbitrary beam-
beam separation.
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Figure 13: Self-consistent dynamic beam sizes
σ1,2/σ0,1,2 ≡

√
e1,2/b1,2, as a function of a com-

mon positive multiplication factor Mξ for both tune shift
parameters. This multiplication factor is intended to model
a change in linear focusing arising from a beam-beam
offset. The tunes are set to 0.520 (HER, e−) and 0.505
(LER, e+), respectively.

Figure 14: Self-consistent dynamic beta functions
β1,2/β0,1,2 ≡ 1/b1,2, as a function of a common nega-
tive multiplication factorMξ for both tune shift parameters.
This multiplication factor is intended to model a change in
linear focusing arising from a beam-beam offset. The tunes
are set to 0.520 (HER, e−) and 0.505 (LER, e+), respec-
tively.

this work.
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Abstract
     The effect of various factors on the spectra of coherent
transverse oscillations in colliding beams is considered,
including the synchro-betatron coupling due to
chromaticity and finite bunch length; several interaction
points, compensation of the incoherent beam-beam
tunespread with electron lenses. Possible consequences
for the coherent beam stability are discussed.

1  INTRODUCTION
     As a rule when the beams are put into collision the
coherent transverse oscillations get damped by large
incoherent beam-beam tunespread. However, it may be
not so in the strong-strong case when there exist discrete
spectral lines of coherent oscillations [1] well separated
from the incoherent tunespread. Moreover, if other
sources of betatron tunespread are weak, the beam-beam
interaction can switch off their stabilizing effect rendering
the coherent oscillations unstable. Probably such a
situation was observed at ISR [2].
     There are various factors which can influence coherent
beam-beam oscillations [3], coupling to the longitudinal
motion being especially important in the case of large
bunch length. The overlapping synchrotron sidebands of
the incoherent tunes can provide Landau damping of the
coherent oscillations if the ratio of the synchrotron tune to
the beam-beam parameter lies within certain limits.
     Understanding of the beam-beam spectra is also
important for correct interpretation of the measurement
data which may be not an easy task in the case of many
bunches colliding at several interaction points.
     In the present report we address the above-mentioned
problems developing the formalism of the Vlasov
perturbation theory of Ref.[3] for the case of large bunch
length. The analysis is limited to the first order in the
beam-beam parameter leaving aside such phenomena as
the dynamic β-effect which may be important in e+e−
machines.

2  WEAK-STRONG CASE
     Let us first consider horizontal oscillations in the weak
beam in the presence of chromaticity and nonlinear
betatron tunespread due to interaction with the strong
beam. Some efficient formulas for analytical computation
of the beam-beam tuneshift and chromaticity (which may
be quite large in the case of numerous long-range
interactions in the arcs) are given in Ref.[4].
     A rigorous way to deal with chromatic tune
modulation is to apply a Lie-transform to eliminate the
Hamiltonian dependence on the longitudinal angle
variable, ϕs (see e.g. Ref.[3]). The Lie-transform gives

new action-angle variables, Ji, ψi, i = x,  y,  s, related to
the original ones in the following way:
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where αM is the momentum compaction factor, R is the
average machine radius, σ is the longitudinal coordinate,
the prime denotes the tune derivative w.r.t. the
momentum deviation, δp.
     In the absence of external perturbation the particle
motion is described by equations
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where the generalized azimuth θ = s/R plays the role of
the independent variable, the superscript k refers to the
beam number. In the following we will ignore the
betatron tune dependence on the synchrotron amplitude
which may still remain after the transformation (e.g. due
to crossing angle at the interaction point); also, we
assume the synchrotron tune to be independent of the
betatron and synchrotron amplitudes.
     Let us now apply an initial perturbation (a horizontal
dipole kick of unitary magnitude in the beam σ) to the
weak beam (let it be the first one). Assuming Ji to be
normalized by the corresponding r.m.s. emittances we can
write for the initial perturbation of the distribution
function
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where Jm is the Bessel function,
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F0 is the equilibrium distribution function assumed to be
Gaussian for both beams:
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     Evolution of the perturbed distribution function is
described by the Liouville equation
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     Let us introduce the complex Courant-Snyder variable,
η, and express it via the new action-angle variables:
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     Averaging it with the distribution function (7) and
performing the Fourier transformation over θ we obtain
for the spectral density of the center-of-mass motion
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where F⊥0 is the distribution function in the transverse
action variables, Im(x) and Θ(x) are the modified Bessel
and Heaviside functions, Jm(λ,Jy) is the solution of the
equation
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     It is worthwhile to compare the spectral density (9) in
the limit of zero chromaticity, χ → 0, with the
distribution function in the incoherent tune:
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where J0 is the solution of eq.(10) at m = 0.
     The major difference is that the spectral density (9) has
the additional factor Jx in the integrand which diminishes
contribution of the core particles. In the case of beam-
beam oscillations these particles have the largest
tuneshift, hence the spectrum is peaked at smaller
tuneshift than the maximum of distribution (11).
     Fig.1 shows these functions in the case of flat beams
when νx does not depend on Jy: for Gaussian beams
(F⊥0 = exp(-Jx-Jy))
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     Let us now return to the case of finite chromaticity. If
the tunespread (equal to ξx in our example) is small
compared to the synchrotron tune then the satellites are
well resolved as shown with red lines in Fig.2 for χ=0.75
which corresponds to chromaticity ν′x = 5.9 in Tevatron.

In the opposite limit the satellites merge (blue line).

3  STRONG -STRONG CASE
     In the case of comparable numbers of particles per
bunch in the two beams, N1 ~ N2, the small-amplitude
oscillations are described by the system of the Vlasov
equations (k = 1, 2):
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where the incoherent tunes ν(k) include the beam-beam
tuneshift, rp = - e1e2/mc2 is the classical radius of particles
(rp >0 for the p - p-bar case), δp(θ) is the periodic δ-
function, ε -1 is vector of inverse emittances (assumed
equal in both beams).
     In long bunches the actual collision point may be
significantly displaced w.r.t. θIP, but the interaction can be
formally ascribed to the nominal IP with the help of a
similarity transformation [5]. In the result the Green
function explicitly depends on the momenta [6]
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     Performing Fourier expansion in the angle variables
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in the non-resonance case we may retain only one
transverse harmonic (mx = 1, m y = 0 for the horizontal
dipole oscillations). However, the coupling between
longitudinal harmonics can not be ignored in the case of
large bunch length and low synchrotron tune (as in
Tevatron), so the dimensionality of the problem is four
(three action variables and the longitudinal phase angle).
     In many practical cases some simplifications are
possible. For horizontal oscillations in flat and round
beams in absence of crossing angle and dispersion at the
IP the Green function can be factorized into a product of
the transverse function G⊥(J⊥, J′⊥) (see [3] and references

(9)

ηc(λ)

F(λ)

λ/ξx

Figure 1: Spectral density of horizontal center-of-
mass oscillations at χ = 0 and distribution in the
incoherent tune in the case of flat beams.

10 log |ηc|

λ/|νs|

Figure 2: Spectral density of horizontal oscillations
in flat beams at χ = 0.75 and ξx/|νs| = 0.2 (red line)
and ξx/|νs| = 2 (blue line).
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     As discussed in [7], series expansion of the perturbed
distribution function in the Laguerre polynomials (or
other smooth functions) of the transverse action variables
fails to converge due to a singularity associated with the
resonance particles. However, this does not refer to the
longitudinal action variable, so that the solution of the
Vlasov equation (13) can be sought for as the expansion
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where Lm
µ(x) is the associated Laguerre polynomial.

     The matrix element of the Green function (16) can be
presented in the form
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      To achieve precision in eigenfrequencies of better
than 10-4 for the bunch length as large as σs = βx

∗ it is
sufficient to take into account the longitudinal harmonics
ms = -3,�, 3 and the Laguerre polynomials with µ=0,�,
3- |ms |. Fig. 3 shows spectra of oscillations in flat beams
obtained by solving the Vlasov equation with 60 points in
the Jx /(1+ Jx) variable.
     The discrete π-mode has the eigenvalue 1.33, so that at
νs/ξx = 0.15 it can be overlapped only by sidebands ms ≥ 3
of the incoherent tunes. One can see a noticeable, though
small, damping effect of the third sideband. With
increasing synchrotron tune the second and then the first
sideband overlap the discrete modes leading to their
practically complete suppression. With further increase
the discrete lines reappear but at shifted positions by
coupling to the sidebands.
     As noted earlier in Refs.[3,4] and can be easily seen in
eq.(16), there is interference between finite bunch length
and chromaticity at χ ~ σs /βx

∗. Fig.4 presents beam-beam
spectra at νs/ξx = 0.15 and two values of parameter χ
corresponding to ν′x = 5.9 and 10 in Tevatron.
Comparison with the plots for the same synchrotron tune
and χ = 0 in Fig.3 shows that the relative weight of the
discrete lines (given by the covered area) first increases
with χ but then rapidly falls off.
     Another interesting observation is absence of the
synchrotron satellites of the discrete spectral lines.

4  MULTI-BUNCH MODES
     The beam-beam spectra look even more complicated
for multiple bunches colliding at several interaction
points. In the case of K identical and equidistant bunches
in each beam the individual distribution functions are
related to the multi-bunch normal modes [1, 3] as follows:
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where functions gn
(k) satisfy the Vlasov equation (13) with

the additional factor exp[-2i(-1)knθ] under the sum sign in
the right hand side.
     In Tevatron the bunches experience two head-on
collisions at the IPs situated 2π/3 apart in θ and a number
of parasitic long-range interactions which we neglect in

(19)

Figure 3: Spectral density of Σ (left) and π (right) modes
in long bunches (σs = βx

∗) excited by a dipole kick at
different values of the synchrotron tune and χ = 0.
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Figure 4: Spectral density of Σ and π modes at νs/ξx =
0.15, σs /βx

∗= 1 and different values of chromaticity.

χ = 1.28
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the present report. It is easy to see that in this case the
beams are split into independent groups of 3 on 3
bunches. Correspondingly, there are three families of the
multi-bunch modes: fundamental (n = 0) and two
intermediate (n = 1, 2) with coinciding spectra.
     Fig.5 shows the normal modes spectra in flat beams
(excited by a proper combination of the dipole kicks) with
the intensity ratio rξ = N1/N2 = 0.3. The fundamental mode
spectra is dominated by the Σ-oscillations at the bare
lattice tune (λ = 0). A remarkable feature of the
intermediate modes is a pronounced peak at ~ 0.1ξx; ξx
being the tuneshift in the weak beam. With lower rξ it
gets closer to the bare lattice tune.
     Fig.6 shows spectra of oscillations in the individual
bunches (which are superposition of the normal modes)
excited by a dipole kick at the first bunch of the strong
beam. The characteristic double-peak structure of the
spectrum can be employed in the beam diagnostics.

5  BEAM-BEAM COMPENSATION
     As can be seen in Fig.5, at the intensity ratio rξ = 0.3
there is no trace left of the discrete π-mode; the Σ-mode at
σs /βx

∗= 1 is noticeably damped by the synchrotron
sidebands of the incoherent tunes.
     It is planned, however, to reduce with the help of
electron lenses [8] the incoherent tunespread of the
antiprotons in Tevatron. Since the electron lenses do not
affect the coherent part of the beam-beam interaction

described by the right hand side of eq.(13), the question
arises whether the residual tunespread will be sufficient to
damp the coherent modes. Another important issue is how
to use the beam-beam spectra for adjustment of the
electron lenses.
     To get an insight the incoherent tunespread in the
weak beam was reduced by 70% to match that in the
strong beam. Otherwise the conditions were as those of
the previous section. With identical tunespreads the
spectra of oscillations in the two beams look the same.
     As can be seen in Fig.7, there appear discrete lines in
the spectrum of the fundamental multi-bunch mode, well
separated from the incoherent tunespread (0, rξξx), ξx
being the tuneshift without compensation. To insure
stability of the discrete modes in the presence of external
impedances a large chromaticity may be necessary.
     On the other hand, the discrete π-mode can be used for
adjustment of the electron lenses by maximizing its
intensity.

6  SUMMARY
• There is strong damping effect on the coherent beam-
beam modes by the overlapping synchrotron sidebands of
the incoherent tunes; in long bunches (σs ~βx

∗) of equal
intensity it already takes place at νs/ξx = 0.15.
• In the case of small intensity ratio and two IPs 2π/3
apart the strong beam spectrum has two peaks: the Σ-
mode at the bare lattice tune and the intermediate mode
with tune shifted by ~ 0.1ξx at rξ = 0.3.
• Due to compensation of the antiproton incoherent
tunespread with the electron lenses the discrete spectral
lines can appear even at small intensity ratio.
• To interpret the observations and extract useful
information it may be helpful to have an on-line running
program computing the beam-beam spectra for the
particular collider settings.

7  REFERENCES
[1] K.Yokoya et al., Particle Accelerators, 27, 181 (1990)
[2] J.-P. Kouchouk, private communication.
[3] Y. Alexahin, LHC Project Report 461 (2001).
[4] Y. Alexahin, Fermilab-TM-2148 (2001).
[5] K.Hirata, H.Moshammer and F.Ruggiero, Particle
Accelerators, 40, 205 (1993).
[6] Y.Alexahin, Frascati Physics Series, X, 255 (1998).
[7] Y.Alexahin, Particle Accelerators, 59, 43 (1998).
[8] V.Shiltsev et al., Phys. Rev. ST-AB 2, 071001 (1999).

n = 0

n = 1, 2

Figure 5: Spectra of the normal multi-bunch modes in
the weak (left) and strong (right) flat beams with
rξ = 0.3 and νs/ξx = 0.05, σs /βx

∗= 1, χ = 0.

β = 1

β = 2, 3

Figure 6: Spectra of oscillations in the bunches of the
weak (left) and strong (right) beams after a dipole
kick at the first bunch of the strong beam.

Figure 7: Spectra of the fundamental (left) and
intermediate (right) multi-bunch modes with 70%
reduction in the weak beam incoherent tunespread.
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Abstract
The coherent phenomena working group considered

beam-beam phenomena in which the particles in both
beams display collective dynamics.  Both direct beam-
beam collisions and the long-range beam-beam interaction
were considered. Attention was given to the coherent
modes and spectra of the beams, particularly because the
coherent spectra are accessible to observation and give
information about the beam-beam interaction that is
otherwise inaccessible. Static equilibrium states of the
beam were also considered: closed orbit perturbations due
to the long-range beam-beam interaction and the flip-flop
effect. Excellent progress is evident in theory, numerical
methods, and observations. Recommendations for future
for future experimental, simulation, and theoretical work
are made.

1 OBSERVATIONS AND ISSUES
Coherent beam-beam phenomena include:

• collective modes of oscillations of the colliding
beams;

• an associated frequency spectrum of coherent
oscillations distinct from the spectrum of incoherent
motion of beam particles, leading to a possible loss
of Landau damping;

• a self-consistent static equilibrium state, including
orbit shifts (in the case of the long-range beam-beam
interaction) or flip-flop (for direct collisions).

Each of these phenomena was considered in this working
group. Each is an example of a strong-strong
phenomenon, in which the dynamics of both beams must
be taken into account together.

We attempted to address the points in the workshop
charge:
1. Review the present understanding of weak-strong and

strong-strong beam-beam phenomena.
2. Critique and future prospects of beam-beam

compensation methods.
3. Review the performance limitations due to weak-

strong phenomena in Run II of the Tevatron, LHC.
4. Review and critique proposals for experiments at

present colliders.
5. Review and critique theoretical strong-strong studies.

The topics considered in the coherent phenomena working
group are relevant for points 1, 4, and 5 of the charge.

The theory and observation of the spectrum of coherent
oscillations of colliding beams were presented in papers
by Y. Alexahin and A. Temnykh.  A calculation of the
self-consistent closed orbit in the LHC was presented by

W. Herr, and an explanation of the egure (flip-flop) effect
seen in KEKB was presented by F. Zimmermann.

2 SPECTRUM OF COHERENT
OSCILLATIONS

2.1 Spectrum of coherent oscillations for finite
bunch length

Y. Alexahin presented a calculation of the spectrum of
coherent transverse oscillations in colliding bunches of
finite length [1] with emphasis on Run II of the Tevatron.
The Tevatron has specific characteristics that must be
accounted for in the coherent beam-beam effect:

• different intensities for p and p;

• a split in the lattice tunes for p and p, due to the

helical separation in the sextupoles;

• multibunch modes (from multiple interaction points);

• bunch length;

• large chromaticity; and

• the effect of the electron lens used for beam-beam
compensation.

An important point was made: the transverse spectrum
of a beam subjected to a single kick is not given simply
by the distribution in single-particle tunes. In fact, there is
the possibility that the Landau damping arising from the
spread in single-particle tunes may be completely lost
under some conditions.

Alexahin found that Landau damping is indeed lost for
equal tunes when the ratio of intensities r > 0.6. Also, he
found that both beams were involved in the coupled
oscillation even for r = 0.3.  That is, one must model the
beam-beam interaction as strong-strong even if the two
beams have quite different intensities.  As the lattice tune
split is varied with r = 0.3, Landau damping can be made
to disppear.

The conclusion is that the ability to interpret the
experimental coherent beam-beam spectrum depends on a
model which includes the lattice tune split, the intensity
ratio, the synchrotron tune, and chromaticity.

2.2 Coherent spectrum and particle density in
tune space

A. Temnykh presented a calculation of the particle
density distribution in transverse tune space N(Qx, Qy)
which was then used to determine the spectrum of
coherent transverse oscillations [2].  The goal of this
study is to use the coherent spectrum as seen in the
control room to gain information about N(Qx, Qy).
Features in N(Qx, Qy) (e.g., tails) can then be used to
diagnose effects such as a displacement of the minimum
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in beta from the interaction point or the effect of the long-
range beam-beam interaction.

For beams which are longer than β*, the longitudinal
tails of the bunch see stronger focusing than the
longitudinal core, since they interact with the other beam
at locations with (on the average) a higher β.  For flat
beams in electron machines, β β σx y z

* *>> ≈ , so N(Qx, Qy)

has much larger tails in Qy than in Qx.  The sharp edge in
the horizontal tune distribution gives a spike in the
spectrum of horizontal coherent oscillations, but the
smoother vertical tune distribution does not produce a
spike in the vertical coherent spectrum. This behavior is
comfirmed by spectrum analyzer measurements.  A spike
is observed only in the horizontal spectrum.

A practical outcome from this study was a set of
recommendations for the CESR operators:

• Use the x-y coupling “knob” to increase the coherent
signal seen on the spectrum analyzer at the high end
of the spectrum (to increase the beam-beam
paramater).

• Use the β* and β*-location knobs to decrease the high
frequency tails seen on the spectrum analyzer (to
decrease the excessive focusing of longitudinal tails).

These recommendations have been a practical aid in
luminosity tuning.

2.3 Phase-amplitude beam-beam transfer
function

A. Temnykh also presented a simple model and
observations from CESR of the complex (phase-
amplitude) transfer function for colliding beams [3]. In the
model and the observations, one beam is shaken, and the
phase and amplitude of both the shaken beam and the
counter-rotating beam are measured.

The model is of two rigid bunches interacting via a
linear beam-beam force.  The difference in transfer
function phase in going from low to high frequency is π
when measuring the shaken beam and 2π, when
measuring the counter-rotating beam.

In measurements of the vertical transfer function in
CESR, the phase shifts of π and 2π were observed, in
accordance with the rigid-bunch model.

3 CLOSED ORBIT WITH LONG
RANGE BEAM-BEAM INTERACTION
W. Herr presented a calculation of the closed orbits of

individual bunches in the LHC [4]. The orbits are
perturbed by the long-range beam-beam interaction near
each interaction point.  Because the LHC bunch pattern is
unsymmetrical (due to gaps for the injection, extraction,
and dump kickers), each bunch experiences a different
perturbation. Each bunch interacts with approximately
120 counter-rotating bunches, and the size of the orbit
perturbation can become large— of the order of the bunch
width.  All 2808 bunches are coupled together.

Because the orbit perturbation is so large, the source of
the perturbation cannot be considered fixed.  It is necessary
to find the self-consistent closed orbits in which both
beams are perturbed.  The self-consistent orbit was found
using an iterative procedure.  A significant result is that
this procedure always converges, which was not known a
priori. This procedure was also used to find tunes and
chromaticities, and was valuable in preparing input for
weak-strong particle tracking.  This technique was used to
evaluate the LHC filling pattern and to determine the
sensitivity to bunch-to-bunch intensity variations.

4 FLIP-FLOP INSTABILITY
F. Zimmermann presented a description of the egure

(flip-flop) instability of the colliding beams in KEKB, and
a theoretical analysis that explains this effect [5].  A
sudden step-like change in the horizontal beam sizes in
KEKB is sometimes observed during “aggressive” tuning
of the horizontal beam offset.  The low energy ring (LER)
σ x

* (beam size at the interaction point) increases as the

high energy ring (HER) σ x
* decreases.

A simple weak-strong calculation of the dynamic beta
effect shows that the horizontal beta at the interaction
point βx

*  is decreased by a factor of 2.40 in the HER and

4.78 in the LER relative to the lattice βx
* .  This strong

dynamic beta effect occurs because the horizontal tune is
so close to a half-integer value: Qx = 44.520 (HER) and
45.505 (LER), but does not explain the observed flip-flop.
A self-consistent (strong-strong) calculation of the
dynamic beta effect, assuming unperturbed emittances,
was found to have only one solution.  Multiple solutions
are required to explain the existence of the normal and flip-
flop states.

The emittance is, however, perturbed by the dynamic
beta effect, because β is perturbed in the arcs of the
machine as well as at the interaction point.  For head-on
collisions, there is still only one self-consistent solution
for the dynamic beta effect including emittance
perturbations.  When the beams are given a relative
horizontal offset so that the horizontal beam-beam force is
defocusing, three solutions appear: one with nearly equal
beam sizes and two flip-flop states. This result is
consistent with the observation in KEKB that the flip-flop
state occurs when the beams get a large relative horizontal
offset.

5 FUTURE WORK

5.1 Experiments
There is very little experimental work to date on the

strong-strong aspects of the long-range beam-beam
interaction. To verify the self-consistent closed orbit
calculations, one might deliberately vary the bunch filling
pattern and create nonuniformities in bunch intensities at
RHIC or at the Tevatron.  One would then monitor the
bunch position, tunes, and chromaticities.
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Observations of the coherent spectrum of transverse
oscillations in hadron machines are needed to examine the
conditions for loss of Landau damping. These would be
useful for understanding the coherent beam-beam
interaction in general, but particular attention should be
paid to the characteristics of the Run II Tevatron.  In the
Tevatron the constraint of using a single beam chamber
leads to a difference in beam intensities (due to the use of
p and p) and bare tunes (due to the helical separation in

the sextupoles). Both RHIC and the Tevatron would be
suitable for these studies. One would excite coherent
modes by single kick and:

• vary the split in the bare tunes;

• vary the beam intensities independently; and

• vary the chromaticity, crossing angles, and strength
of non-linearities (e.g., IR sextupoles).

The mechanism proposed by F. Zimmermann to
explain the flip-flop effect in KEKB should apply to other
radiation-damped machines as well. Experiments could be
performed in PEP-II, DAFNE, CESR, or other e+e–

colliders in which the beams are intentionally horizontally
mis-steered to verify the conditions for flip-flop.

5.2 Simulations
The theory and observations presented in this working

group indicates that the coherent beam-beam interaction
and the spectrum of coherent oscillations many machine
parameters.  Thus, particle-tracking simulations should:

• have the best possible resolution of the phase space
densities or their projections or higher order
moments;

• track for a large number of turns, and must be
optimized for speed;

• include six-dimensional dynamics;

• include impedances;

• include non-linearities;

• include closed orbit perturbations;

• include feedback; and

• be carefully benchmarked against experiment.

Calculations of the coherent beam-beam spectrum and
transfer function based on macroparticle models, and
observations of the spectrum and transfer function, should
be compared with particle-tracking simulations.

5.3 Theory
Theoretical models beyond the linearized Vlasov

equation might be developed to help deepen our
understanding of the beam-beam interaction.

The model used by F. Zimmermann to explain the
existence of flip-flop states in KEKB is linearized and
consides only horizontal displacements at the IP, but
might be extended to include vertical displacements,
crossing angles, bunch length effects, and a nonlinear
beam-beam force.

6 REFERENCES

[1] Y. Alexahin, “(Notes on the) Spectra of Coherent
Transverse Oscillations in Colliding Bunches of
Finite Length”, these proceedings.

[2] A. Temnykh, “Modeling of the 2D particle density
distribution function in tune space resulted from
beam-beam interaction”, these proceedings.

[3] A. Temnykh, “Study of phase - amplitude
characteristics of colliding beams spectrum”, these
proceedings.

[4] H. Grote and W. Herr, “Self-consistent closed orbit
caused by beam-beam effects in the LHC”,
http://wwwslap.cern.ch/collective/zwe/lhcbb/   
talks_beambeam.html   .

[5] F. Zimmermann, “Beam sizes in collision and flip-
flop states for KEKB”, these proceedings.

120



SECTION V: Theory and simulations of
Strong-strong interactions

121
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Abstract

We study a nonlinear integral equation for the equilbrium
phase distribution of stored colliding electron beams. It is
analogous to the Haı̈ssinski equation, being derived from
Vlasov-Fokker-Planck theory, but is quite different in form.
We prove existence of a unique solution, thus the existence
of a unique equilibrium state, for sufficiently small current.
This is done for the Chao-Ruth model of the beam-beam in-
teraction in one degree of freedom. We expect no difficulty
in generalizing the argument to more realistic models.

1 INTRODUCTION

In the theory of stability of stored beams a primary step
should be the study of equilibrium states, expected at low
current. An equilibrium state should become unstable at
some threshold in current, but in order to compute the
threshold we must linearize the kinetic equation (Vlasov or
Vlasov-Fokker-Planck ) about the equilibrium phase space
distribution. Historically, investigators have often been
lazy about this point, linearizing the Vlasov equation about
some state that might be at best a rough approximation to an
equilibrium. This may be excused by the fact that determi-
nation of the equilibrium is a nonlinear problem, in general
rather difficult.

There is one case in which there is a widely known theory
of equilibrium that makes some contact with experiment;
namely, the case of longitudinal motion of a single stored
electron beam subject to a wake field [1, 2]. The theory
is based on a model in which the exact longitudinal wake
field is replaced by its average over one turn. The aver-
aged wake of course depends only on the distance between
source and test particles, not on the position in the ring.
With such a wake one may seek a time-independent, fac-
torized solution of the Vlasov-Fokker-Planck (VFP) equa-
tion; namely, a product of a Gaussian in the canonical mo-
mentum p (proportional to the energy deviation) and the
charge density ρ(q), where q is the canonical coordinate
(proportional to the distance from the synchronous parti-
cle). The equation is satisfied by such a factorized form,
provided that the charge density satisfies the Haı̈ssinski
equation [1], a nonlinear integral equation. If the wake
field satisfies a mild restriction, it is not difficult to prove
that the equation has a unique solution in a large func-
tion space S, at sufficiently small current. The correspond-
ing solution of the VFP equation is the unique, small-

∗Work supported in part by Department of Energy contracts DE-FG03-
99ER41104 and DE-AC03-76SF00515.

current solution satisfying the principle of detailed balance
( with ρ ∈ S).

There are many ways in which this prototype theory of
equilibrium might be extended. For instance, one might
include multi-bunch beams, long-range wakes from cavity
resonators or resistive walls, nonlinear r.f., proton beams
with non-Gaussian distributioninp, localized wakes not av-
eraged over azimuth. Here we are interested in two counter-
rotating beams in collision. In mathematical aspects the
problem has similarities to the case of a single beam with
localized wake contributions.

The beam-beam collision gives a large transverse force
that substantially modifies the beams at every collision.
Consequently, the equilibrium state, if any, cannot be time-
independent. Rather, it must be defined as a phase space
distribution that is periodic in azimuthal position s. As a
zeroth approximation, one could smear out the localized
beam-beam kick, distributing it over a full turn. This has
been done in linear stability studies [3]. Here we wish to
avoid such a step, accounting fully for the localization. It
then follows that we cannot deal with a factorized distri-
bution. We must expect the equilibrium equation to be an
integral equation for functions on phase space, not just on
coordinate space as in the Haı̈ssinski case. We derive and
analyze the simplest instance of such an equation, retaining
the full nonlinearity of the beam-beam force.

Some background to the present study is found in a recent
paper [4]. There we made an analytic study of equilibria by
linearizing the beam-beam force, but retaining the quadratic
nonlinearity of the Vlasov equation. We also carried out a
numerical integration of the nonlinear VFP system. Here
we adopt the notation and equations of motion as given in
Ref. [4].

2 FORMULATION OF THE PROBLEM

We treat vertical transverse motion with normalized
phase-space variables (q, p) defined in terms of the lattice
function β(s) and emittance ε as

q = y(βε)−1/2 , p = (βy′ − β′y/2)(βε)−1/2 , (1)

where y is the vertical displacement and the prime de-
notes d/ds. The Hamiltonian of motion unperturbed by the
beam-beam interaction isH = (p2+q2)/2 and the indepen-
dent “time” variable of Hamilton’s equations is the phase
advance θ =

∫ s
0 du/β(u). We distinguish the two beams

by superscripts (1), (2).
The Chao-Ruth model [5] is intended to represent flat

beams, with large x : y aspect ratio. The force on a particle
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in beam (1) is approximated as though it came from infinite
uniform planes of charge perpendicular to the y-axis, dis-
tributed with a density ρ(2)(y). This force is concentrated
in time, however, at the instant of collision. The resulting
kernel function for the beam-beam force is proportional to
sgn(q − q′), where sgn(x) is the signum function, equal to
1 for x > 0 and −1 for x < 0. For simplicity in nota-
tion we take the two beams to have equal properties (tune,
energy, bunch height and width, β∗, damping time). The
mathematical argument would be the essentially the same
with unequal beam properties. The formal Vlasov-Fokker-
Planck system is

∂f(1)

∂θ
+ p

∂f(1)

∂q
−

[
q + (2π)3/2ξ

∑
n

δ(θ − 2πνn)

·
∫ ∞

−∞
sgn(q − q′)

∫ ∞

−∞
f(2)(q′, p′, θ)dq′dp′

]
∂f(1)

∂p

= 2α
∂

∂p

[
pf(1) +

∂f(1)

∂p

]
, (and 1 ↔ 2) , (2)

where the distribution function for beam (i) is f (i)(q, p, θ),
the vertical betatron tune is ν , and the beam-beam param-
eter is ξ = Nβ∗re/((2π)1/2γσyLx). Here β∗ is the beta
function at the IP, re = e2/(4πε0mc2) is the classical elec-
tron radius, γ is the Lorentz factor, Lx is the bunch width,
and σy = (β∗ε)1/2 is the bunch height. The right hand side
of (2) is the Fokker-Planck contribution, with damping con-
stant α = 1/(2πνnd), where nd is the number of turns in a
damping time. Our phase space coordinates have been de-
fined so that the damping and diffusion constants are equal.

Equation (2) has only a formal significance, since the
θ- dependent factors multiplying the delta function actu-
ally change discontinuously at the IP where the delta func-
tion acts. Consequently, we cannot say how to evaluate
those factors without further analysis. Actually, the correct
change of the distribution function at the IP is easy to see.
Let f(1)(q, p, 0−) and f(1)(q, p, 0+) represent the distribu-
tions just before and just after θ = 0 (mod 2πν). Then
by the usual argument from probabilityconservation [2] the
distribution is changed by the inverse of the kick map; i.e.,
by the Perron-Frobenius operator for that map:

f(1)(q, p, 0+) = f(1)(q, p− F (q, 0−), 0−) , (3)

where

F (q, 0−) = −(2π)3/2ξ
∫

sgn(q−q′)f(2)(q′, p′, 0−)dq′dp′ .

(4)
For propagation of the distribution function between

IP kicks, we have in (2) a linear Fokker-Planck equation
with harmonic force. The propagator or fundamental so-
lution of that equation is known [6], namely a function
Φ(z, z′, θ) , z = (z1, z2) = (q, p) such that for any initial
distribution f(z, 0) the solution at time θ is

f(z, θ) =
∫

Φ(z, z′, θ)f(z′, 0)dz′ . (5)

There are several equivalent representations of Φ. The
following form, which was derived from a probabilis-
tic argument, is especially convenient for our work:

Φ(z, z′, θ) =
1

2π(det Σ)1/2
exp

[
−

(
z − eAθz′

)TΣ−1
(
z − eAθz′

)
/2

]
,

Σ = I − eAθeA
T θ . (6)

Here T denotes transposition and eAθ is the transfer ma-
trix for the single-particle harmonic motion with damping.
With damping constant α we have

eAθ = e−αθ
(

a+ b
−b a−

)
,

a± = cos Ωθ ± (α/Ω) sin Ωθ , b = (1/Ω) sin Ωθ

Ω = (1− α2)1/2 , det(eAθ) = e−2αθ . (7)

Let Φ denote the operator corresponding to the kernel
Φ(z, z′, θ) in (5). The action of Φ has a simple expression
in Fourier space. Writing ĥ for the Fourier transform of h,
we have

Φ̂h(v) = exp
[
−vT eAθΣeA

T θv/2
]
ĥ(eA

T θv) . (8)

We can now set down a system of integral equations for
the equilibrium distribution. The equations are for the dis-
tributions evaluated just after the IP, f (i)(z, 0+). Hence-
forth we suppress the time specification 0+. Starting with
f = (f(1), f(2)), we propagate one turn by (5) with θ =
2πν , and then apply the beam-beam kicks according to (3).
For equilibrium (periodicity), the result must be the starting
f . To state this in equations we first define the linear oper-
ator L by

Lf(q) = (2π)3/2
∫ ∫

sgn(q−q′)K(z′|z′′)f(z′′)dz′dz′′ ,

(9)
where K is the Fokker-Planck propagator for one turn,

K(z|z′) = Φ(z, z′, 2πν) . (10)

The integral equations take the form

f(i)(z) =
∫

K( q, p + ξLf(j)(q) | z′ )f(i)(z′)dz′ ,

i �= j , i, j = 1, 2 , (11)

with ∫
f(i)(z)dz = 1 . (12)

It is essential that the normalization constraint (12) be
regarded as part of the definition of the mathematical sys-
tem; otherwise in Eqs.(11) there is nothing to set the scale of
the beam-beam force. We choose to build in the constraint
by redefining the integral equations, dividing the right hand
side of (11) by

∫
f(i)(z)dz. Then, since

∫
K(z|z′)dz = 1,
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any solution of the modified equation will automatically
satisfy (12). Finally we multiply by

∫
f(i)(z)dz and rear-

range to state the pair of equations as

G(f, ξ) = 0 , (13)

where G = (G(1), G(2)) with

G(i)(f, ξ)(z) = f(i)(z)
∫

f(i)(z′)dz′

−
∫

K( q, p + ξLf(j)(q) | z′ )f(i)(z′)dz′ , i �= j .

(14)

We know the solution of (13) at ξ = 0; it is the Gaussian
equilibrium in the absence of beam-beam force,

G(f0, 0) = 0 , f0 = (f(1)
0 , f

(2)
0 ) ,

f
(i)
0 =

1
2π

exp
(
−1

2
(q2 + p2)

)
. (15)

We apply the implicit function theorem to prove that this
solution can be continued in a unique way to a solutionf(ξ)
of (13) for small ξ �= 0. This requires an implicit function
theorem in an infinite-dimensional function space. Let us
first recall the intuitive basis of the theorem in finitely many
dimensions, so that (13) represents n real (generally nonlin-
ear) equations in n unknowns fj , j = 1, · · · , n. We wish
to solve for the fj as a function of the parameter ξ, suppos-
ing that a solution f0j for ξ = 0 is known. Supposing that
G is smooth, we can expand it by Taylor’s formula with re-
mainder R about the point (f0, 0):

G(f, ξ) = Gf (f0, 0)(f−f0)+Gξ(f0, 0)ξ+R(f, ξ) = 0 .
(16)

If the Jacobian matrix Gf = {∂Gi/∂fj} is non-singular at
the expansion point, and the nonlinear remainder R is small,
an approximate solution of our problem is

f(ξ) ≈ f0 −Gf(f0, 0)−1Gξ(f0, 0)ξ . (17)

The implicit function theorem takes into account the non-
linear term, and assures us that for sufficiently small ξ there
will be a unique exact solution of (13) close to the approx-
imation (17). The Jacobian is required to be nonsingular
only at the single point (f0, 0).

In the infinite-dimensional case we must first decide on
the arena of the discussion: in what space of functions do
we seek a solution of (13)? Physicists are usually famil-
iar with Hilbert space, but here we can get by with a sim-
pler notion, a Banach space. Like the Hilbert space, it is
a complete linear space with a norm, but is not required to
have a scalar product. For instance, the set of all contin-
uous functions f(x) on the unit interval [0, 1] is a Banach
space if the norm is defined as ‖f‖ = max[0,1] |f(x)|. Sec-
ondly, we must give a meaning to the Jacobian Gf when f
is a function rather than a finite-dimensional vector. A sim-
ple possibilityis the Fréchet derivative, which for a function

G(f) on a Banach space is defined at f0 as a linear operator
Gf(f0) such that

lim
‖h‖→0

1
‖h‖‖G(f0 + h)−G(f0) −Gf(f0)h‖ = 0 . (18)

We are now ready to state the implicit function theorem
in Banach space, in a form sufficiently general for our pur-
poses (but hardly the most general).

Theorem: Let B be a Banach space, and sup-
pose that G is a continuously differentiable map-
ping (operator) of B × I into B, where I =
(−∆ξ,∆ξ) is an open interval, the domain of ξ.
The continuous differentiability implies that the
partial (Fréchet) derivatives Gf(f, ξ) , Gξ(f, ξ)
exist and are continuous in B × I. Let f0 ∈
B be a solution of G(f0, 0) = 0, and suppose
that Gf(f0, 0) is a continuous linear map of B
onto B with a continuous inverse. Then there
exists a unique solution f(ξ) of G(f, ξ) = 0
such that f(0) = f0, for ξ in some interval
I0 = (−δξ , δξ) ⊂ I , δξ �= 0. More-
over, for ξ ∈ I0 this solution has a continuous
derivative with respect to ξ and (Gf(f(ξ), ξ))−1

exists. The derivative is given by f ′(ξ) =
−(Gf(f(ξ), ξ))−1Gξ(f(ξ), ξ) .

The theorem alone does not give us an estimate of the size
of the interval I0 in which the solution exists. In specific
cases analytic estimates can be made, but they may be pes-
simistic. In our problem, we mainly seek assurance that an
equilibrium exists for sufficiently small current. We shall
have to rely on numerical calculations to determine a max-
imum interval of existence. Calling on experience with the
Haı̈ssinski equilibrium, we expect that as the current is in-
creased the equilibrium will become unstable long before it
ceases to exist.

To apply the implicit function theorem to (13), a crucial
matter is to find a suitable space B. As is usual in applica-
tions of functional analysis, this requires some experimen-
tation. The space has to be tailored to fit the properties of the
operator. A primary requirement is that B × I be mapped
into B, and that is relatively easy to check for some candi-
dates for B. Further requirements such as invertibility of
Gf(f0, 0) may be harder to verify, and lead us to refine the
choice, perhaps taking a subspace of an initial candidate for
B.

After various estimates of integrals we find that a suit-
able B consists of all pairs f = (f(1), f(2)) of continuous
functions on the phase space R2 such that the following ex-
pression, identified as the norm, is finite:

‖f‖ = max
i

sup
z∈R2

| (1 + ‖z‖2a)f(i)(z) | , a > 2 , (19)

where ‖z‖ = (z2
1 + z2

2)1/2 and sup (supremum) denotes
the least upper bound. This is a “big” space, in the sense
that it contains functions with slow, polynomial decrease at
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infinity, whereas intuitionand the results of Ref.[4] indicate
that the actual decrease of the solution is close to Gaussian.
The advantage of a big space is that our assertion of unique-
ness of the solution means uniqueness in a bigger universe.
The disadvantage is that our resulting theorem will give no
close information on the actual fall-off of the solution, since
it merely asserts that the solution is in B. We did not suc-
ceed in finding a space with Gaussian fall-off, mapped into
itself by G.

3 SOME HIGHLIGHTS OF THE PROOF

Here we give a few main points of the proof, deferring
full details to a future report. We have to verify the three
main hypotheses of the implicit function theorem, namely

1. G : B × I → B

2. Gf , Gξ exist and are continuous in B × I

3. Gf(f0, 0)−1 exists and is continuous

Suppose that f ∈ B. Then its Fourier transform f̂ exists
and is bounded. By (8) one then sees that every derivative
of Kf(z) =

∫
K(z|y)f(y)dy exists and is bounded, be-

ing the Fourier transform of an absolutely integrable func-
tion. For estimates of the action of K on f we can prove the
lemma ∣∣∣∣ ∂m+n

∂zm1 ∂zn2

∫
K(z|y)dy
1 + ‖y‖2a

∣∣∣∣ ≤ Mmn

1 + ‖z‖2a , (20)

for any m ≥ 0, n ≥ 0, where the constant Mmn depends
on a and the parameters definingK. Using these results one
verifies that hypothesis (1) holds.

To check (2) for Gf , we compute the formal variational
derivative of G, applied to a variation h ∈ B. That is a lin-
ear integral operator L applied to h. Then some work with
the lemma and the mean-value theorem shows that L is in-
deed the Fréchet derivative. In fact, the numerator under the
limit in (18) is O(‖h‖2) if Gf = L.

The hardest part of the proof is verifying item (3). In text-
book examples it is usual to suppose that Gf − 1 is a com-
pact operator, in which case one can apply Fredholm theory
to discuss existence of G−1

f . In the present case this oper-
ator appears to be non-compact, and we have to resort to a
more subtle method. We get the inverse by proving uniform
convergence of an operator power series development, and
the convergence is at a slow rate determined by the damp-
ing constant. Thus, the proof fails for a proton system with
no damping, and it does not seem at all likely that one could
get a proof for zero damping by somehow taking a limit.

Since the power series method is interesting and novel,
we give a few details. We have to show that the equation

Gf(f0, 0)x = y (21)

has a unique solutionx ∈ B for any y ∈ B. At zero current
Gf breaks into two identical and independent blocks for the

two beams. Then (21) for one block takes the form

x(z) + f0(z)
∫

x(z′)dz′ −Kx(z) = y(z) , (22)

where now x and y are single functions, not pairs. We dis-
cuss (22) in the space B1, which is defined in the same
way as B, except that it consists of single functions; i.e.,
B = B1 ×B1 . For any x ∈ B1,∫

Kx(z)dz =
∫

x(z)dz , (23)

from which it follows that any solution of (22) must satisfy∫
x(z)dz =

∫
y(z)dz . (24)

Consequently, any solution of (22) must also be a solution
of

x(z) −Kx(z) = p(z) , (25)

p(z) = y(z) − f0(z)
∫

y(z′)dz′ ,
∫

p(z)dz = 0 .

We look for solutions of (22) among the solutionsof (25).
Iterating (25) n− 1 times we find

x = Knx +
n−1∑
m=1

Kmp + p . (26)

Here the story is different from the familiar case of the Neu-
mann series, since the term Knx does not vanish in the
limit of large n. By the semigroup property of the linear
Fokker-Planck evolution, the kernel of Kn is given by (6)
with θ = 2πnν . If x ∈ B1 the integral defining Knx con-
verges uniformly in n, since the integrand is majorized by
|x(z′)| and

∫
|x(z)|dz < ∞. We may then take the limit

under the integral to obtain

lim
n→∞

Knx(z) = f0(z)
∫

x(z)dz . (27)

Thus, from (26) a solution of (25) in B1 is expected to have
the form

x = f0

∫
x(z′)dz′+

∞∑
m=1

Kmp+y−f0

∫
y(z′)dz′ . (28)

A candidate for a solution of (22) must satisfy (24), so that
from (28) the unique candidate is

x(z) =
∞∑

m=1

Kmp(z) + y(z) . (29)

We are now faced with a delicate step of the proof, to show
that for any y ∈ B1 the series in (29) converges and rep-
resents an element of B1. Once that it is done, it is easy to
check that (29) represents a solution of (22), unique in B1.

To estimate the Knp we formally subtract
exp(−zT z/2)

∫
p(z′)dz′, which is zero, and then do
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some analysis with the mean value theorem to get the
following bound:

In =
∣∣∣∣2π(det Σn)1/2Knp(z)

∣∣∣∣
=

∣∣∣∣ ∫ [
exp[−(z − enθAz′)T (z − enθAz′)/2]

− exp[−zT z/2]
]
p(z′)dz′

∣∣∣∣
≤ M(1− exp(−zT z/2))

zT z
(1 + ‖z‖)e−nθα ,

θ = 2πν , (30)

where α is the damping constant. (We writeM for a generic
constant in majorizations. In any statement M may have
a value larger than in any previous statement.) Now (30)
is enough to show uniform convergence (in the maximum
norm) of the series in (29) over any finite ball ‖z‖ < r,
but not enough to show that the sum of the series belongs
to B1. To complete the job we get a bound by a different
method which fails at small ‖z‖ but works for ‖z‖ > r.
For that we break the integral in (30) into two parts, one for
‖ exp(nθA)z′‖ < b‖z‖ and the other for ‖ exp(nθA)z′‖ >
b‖z‖, with 0 < b < 1. In the second region the coefficient
of p(z′) is not small, and we have to rely wholly on the fall-
off of p(z′). Using appropriate estimates for the two regions
(and supposing α < 1/2, which is more than safe for real
machines) we find

In ≤
M

1 + ‖z‖2a e
−nθα , ‖z‖ > r . (31)

Combining (30) and (31) we have for all z that

|Knp(z)| ≤ M

1 + ‖z‖2a e
−nθα , (32)

from which it follows that x as given in (29) exists and be-
longs toB1. Furthermore, this function satisfies the original
equation (22):

∞∑
m=1

Kmp + y + f0

∫ [ ∞∑
m=1

Kmp(z′) + y(z′)
]
dz′

−
∞∑
m=2

Kmp−Ky = y (33)

since we know that Kf0 = f0 and
∫ ∑∞

m=1 Kmp(z)dz =∑∞
m=1

∫
Kmp(z)dz =

∑∞
m=1

∫
p(z)dz = 0, the reversal

of sum and integral in the latter being justified by (32).
To prove that the solution is unique, suppose that there

were two solutionsx1 , x2 inB1. Then x = x1−x2 satisfies
(22) with y = 0, from which it follows that

∫
x(z)dz = 0,

hence x −Kx = 0. Iterating the latter equation, we have
x = Knx = limn→∞ Knx = f0

∫
x(z)dz = 0. Finally,

the continuity of Gf(f0, 0)−1 is clear, since a small change
in y evidently produces a small change in x.

4 CONCLUSION

We have sketched the proof that there is a unique solu-
tion to the Vlasov-Fokker-Planck system for the Chao-Ruth
model of colliding electron beams at sufficiently small cur-
rent. The details of the various estimates involved will be
given in a longer report. We are fairly confident that the
proof will go through in almost the same way for other mod-
els in one degree of freedom [3] and for the model in two
degrees of freedom in which the force is obtained from the
two-dimensional Poisson equation. The case of protons,
without radiation damping, is an entirely different story.
One expects infinitely many approximate equilibria [4, 7],
but the question of exact equilibria is open.
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An Averaged Vlasov Equation for the Strong–Strong Beam–Beam

J. A. Ellison, M. Vogt, UNM, Albuquerque, NM 87131, USA

Abstract

The Strong–Strong Beam–Beam is studied in the frame-
work of maps with a “Kick–Rotate” model. The classical
method of averaging is applied to derive an approximate
map which is equivalent to a flow within the averaging ap-
proximation. This flow leads to an averaged Vlasov equa-
tion (AVE); the basic model of this paper. The power of
this approach is evidenced by the fact that the AVE has ex-
act equilibria and the associated linearized equations have
uncoupled azimuthal Fourier modes. In the usual way, the
Fourier mode equations lead to a Fredholm integral equa-
tion of the third kind. We have solved this numerically in a
special case, found the � and � mode frequencies and they
are in excellent agreement with simulation.

1 INTRODUCTION

In this paper we introduce a new approximate model
for the strong–strong beam–beam interaction. This both
generalizes and simplifies the work of [1, 2, 3] on the
strong–strong beam–beam interaction in high energy col-
liders. Our model is based on the classical method of aver-
aging generalized to maps and collective forces and leads to
an averaged Vlasov equation (AVE). The previous pioneer-
ing works make several assumptions and approximations
which are difficult to assess mathematically. Here we make
only one assumption, we assume that the classical method
of averaging is valid for this problem. We do not intro-
duce a delta function into the Vlasov equations of motion,
which is ambiguous because the density is discontinuous
at the point of the delta function. Thus we have no need to
smooth the delta function, an approximation, the nature of
which is hard to assess. The technique we introduce should
be of general interest to studies of the Vlasov equation with
a perturbative collective force.

To motivate the method of averaging for maps with a
collective force we review our approach to rigorous aver-
aging theory in Section 2. In Section 3, we discuss our
basic model, the kick-rotate model. We transform the basic
equations to slowly varying coordinates so that the equa-
tions are in the standard form for the method of averaging.
In Section 4, we present our averaging procedure for the
model of Section 3 in the off resonance case. Our aver-
aged equations are a pair of coupled Vlasov equations. We
do not yet have error bounds and so we must rely on our
experience with simpler problems as in Section 2 and com-
parison with simulation. The averaged equations, as usual,
have special structures not shared by the exact equations.

For example, they have equilibrium solutions, and this is
discussed in Section 5. This suggests the exact model has
quasi–equilibria. We have compared one of the equilib-
ria with the simulation for that initial density and we ob-
tain excellent agreement over 130,000 turns. Because we
have equilibria, we can linearize about these equilibria and
study the linearized equations. This is done in Section 6,
where we introduce the equations for the � and � modes.
Unlike previous approaches, these equations have uncou-
pled Fourier modes in the azimuthal variable. Using the
usual ansatz, we derive an integral equation of the third
kind for the � and � mode frequencies. We have solved the
equations for the dipole Fourier mode, and obtain excel-
lent agreement with simulation for both the � and � mode
frequencies. Section 7 discusses our plans for the future.
The appendix contains three topics which are germane to
our discussions. The Gronwall inequality which is a basic
inequality of the elementary theory of ODEs, the Besjes
Lemma which is the basic tool in our approach to obtain-
ing rigorous error bounds in our averaging procedures and
finally a statement of the Birkhoff Ergodic Theorem which
we need for the existence of our averaged problem.

2 AVERAGING PROCEDURE AND
ERROR BOUNDS

Here we show how the method of averaging can be ap-
plied to a perturbed autonomous linear system defined by
a matrix A. We use t as the independent variable, but of
course it could refer to distance s or azimuthal variable �

for example.
Consider the IVP

d

dt
~x = A~x+ � ~f(~x; t) +O(�2) ; ~x(0) = ~x0 ; (1)

where f(x; �) is quasiperiodic. The first step is to transform
it to slowly varying coordinates. It is natural to use the
“variation of parameters” transformation given by

~x =: eAt~z : (2)

This leads to

d

dt
~z = � e�At ~f

�
eAt~z; t

�
+O(�2) := �~g(~z; t) +O(�2) ;

(3)
which is in a standard form for averaging. The averaged
IVP is given by

d

dt
~v = � �~g(~v) ; ~v(0) = ~x0 ; (4)
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where

�~g(~v) := lim
T!1

1

T

Z T

0

~g(~v; t) dt : (5)

The averaging formalism is now complete and we turn
our attention to the error analysis. We subtract (4) from (3)
and integrate to obtain

~z(t)� ~v(t) = �

Z t

0

[~g(~z(t0); t0)� ~g(~v(t0); t0)] dt0

+ �

Z t

0

�
~g(~v(t0); t0)� �~g(~v(t0))

�
dt0

+ O(�2t) : (6)

The second integral on the r.h.s. has zero mean and by the
Besjes Lemma (see appendix) it can be bounded by a con-
stant, say C1 on O(1=�) t�intervals, in the case where, for
example, g is quasiperiodic. Thus we obtain

j~z(t)� ~v(t)j � �L

Z t

0

j~z(t0)� ~v(t0)j dt0 + � (C1 + C2) ;

(7)
for 0 � t � T=�, where L is the Lipschitz constant for g.

The Gronwall inequality (see appendix) then gives

j~z(t)� ~v(t)j � � C eLT ; 0 � t � T=� ; (8)

where C = C1 + C2 and C2 came from the O(�2) term in
(1). Thus we say that the solution of (4) gives an O(�) ap-
proximation to the solution of (3) on O(1=�) t�intervals.
We call this a formal error analysis because solution do-
mains and associated constants must be carefully defined
and resonance considerations addressed. Reference [4] dis-
cusses this in detail and an improved approach for maps is
given in [5].

3 THE KICK-ROTATE MODEL IN 2–D
PHASE SPACE

Here we consider head on collisions of two counter ro-
tating bunches with one IP and with the betatron motion
modeled by a rotation with tune Q0 =: �=2�. Our view-
point is directly before the IP and  n(~x) and  �n(~x) denote
the phase space densities of the two bunches just before the
n-th passage bunch crossing at the IP. All densities are nor-
malized to 1. In general, any symbol without a star will
refer to one (the “unstarred”) beam and any symbol with a
star will refer to the other (the “starred”) beam.

The beam–beam kick is written

~xn �
�
q

p

�
n

7!
�

qn
pn � �(g ?  �n)(~xn)

�
:= ~x0n ; (9)

where

(g ?  )(~x) :=

Z
R2

g(q � q0) (~x) d2x ; (10)

and g(q) is the derivative of the Green’s function of the
appropriate Poison problem. For example,

CR: g(q) / sgn(q); ; YKZ: g(q) / P:V:
1

q
; : (11)

where CR refers to the case discussed in [1] and YKZ refers
to the case discussed in [2]. Equation (9) is the kick on the
unstarred beam due to the starred beam. The perturbation
parameter � is proportional to the the linear beam–beam
tune shift parameter as will be seen in Eq. (43). For the
propagation through a linear lattice we assume linear nor-
mal form coordinates, thus

~x0n 7! R~x0n := ~xn+1 ; R =

�
cos� sin�
� sin� cos�

�
= eJ�

(12)
where � = 2�Q is the phase advance per turn and J is the
symplectic unit matrix.

Thus the OTM becomes

~xn+1 = R

�
~xn � �

�
0

1

�
(g ?  �n)(~xn)

�
; (13)

and the turn–by–turn evolution of the densities is given by

 n+1(~xn+1) =  n(~xn) &  �n+1(~x
�
n+1) =  �n(~x

�
n) :

(14)
We assume in the following that Q0 = Q�0 and � = ��.

KBB

0−

R
Figure 1: The kick rotate model

We now go to slowly varying coordinates by the action–
”angle” transformation

~x =:
p
2J

�
sin(n�+�)

cos(n�+�)

�
: (15)

Note that the transformation is symplectic and has an ex-
plicit time dependence through n. The OTM in the (�; J)
coordinates is

�n+1 = �n + �
1p
2Jn

sin(n�+�n)�
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(g ?  �n)(~x(�n; Jn)) +O(�2) (16)

Jn+1 = Jn � �
p
2Jn cos(n�+�n)�

(g ?  �n)(~x(�n; Jn)) +O(�2) : (17)

We note that for small � the angle� and action J are slowly
varying. Introducing the slowly varying density by

	n(�; J) :=  n(
p
2J sin(n�+�);

p
2J cos(n�+�));

(18)
we can rewrite the convolution g ?  n as an integral over
the slow variables as

(g ?  �n)(~x(�n; Jn)) =Z
C

g
�p

2Jn sin(n�+�n)�
p
2J 0 sin(n�+�0)

�
dPn ; (19)

where C := [0; 2�) � R
+ is the product of the one–

torus and the positive real axis and dPn is shorthand for
	n(�

0; J 0) d�0 dJ 0. Furthermore, introducing the Green’s
function G(q) via d

dq
G = g we can rewrite the OTM de-

fined by (16 – 17) compactly in terms of a map generator
F as

�n+1 = �n + �@JF (�n; Jn; n�; 	
�

n) +O(�2) ; (20)

Jn+1 = Jn � �@�F (�n; Jn; n�; 	
�

n) +O(�2) ; (21)

where

F (�; J; �; 	) :=Z
C

G
�p

2J sin(�+�)�
p
2J 0 sin(�+�0)

�
dP ; (22)

and

	n+1(�n+1; Jn+1) = 	n(�n; Jn) : (23)

4 MAP–AVERAGING

The OTM (16), (17) (and (20), (21) of course) contain
the slow variables (�; J), the slow density 	 and have an
explicit time dependence through the term n�. The aver-
aged equations could be obtained by simply averaging F
in(20), (21), but in order to avoid the issue of the commu-
tation of partial derivative and average we proceed with the
explicit form of the OTM (16), (17). Thus the averaged
equations are obtained by dropping the O(� 2) term in (16),
(17) and averaging over n holding �n, Jn and 	�n fixed, in
complete analogy with Section 2.

First we note that the argument of g in (19) can be written

p
2J sin(n�+�)�

p
2J 0 sin(n�+�0) =

cos(n�+ �(�; J;�0; J 0)) D(J; J 0;���0) (24)

where

D(J; J 0; #) :=

q
2J + 2J 0 � 4

p
JJ 0 cos# ; (25)

where � is defined by (24) and both � and D do not explic-
itly depend on n. We rewrite (16), (17) as

�n+1 = �n + �
1p
2Jn

sin(n�+�n)�
f(�n; Jn; n�; 	

�

n) ; (26)

Jn+1 = Jn � �
p
2Jn cos(n�+�n)�

f(�n; Jn; n�; 	
�

n) ; (27)

f(�; J; �; 	) :=

Z
C

g
�
D(J; J 0;���0)�

cos(�+ �(�; J;�0; J 0))
�
dP : (28)

Clearly,

ei(n�+�)f=

Z
C

ei(���)ei(n�+�)g(D cos(n�+ �)) dP ;

(29)
and for g bounded the dominated convergence theorem
gives

ei(n�+�)f
n
=

Z
C

ei(���)ei(n�+�)g(D cos(n�+ �))
n
dP ;

(30)
that is, we can interchange the order of taking the average
and integrating. If �=2� is irrational then Birkhoff’s er-
godic theorem, [6, p. 30] (see appendix also), gives

ei(n�+�)g(D cos(n�+ �))
n
:=

lim
N!1

1

N

N�1X
n=0

ei(n�+�)g(D cos(n�+ �)) =

1

2�

Z 2�

0

g(D cos t)eit dt =

1

2�

Z 2�

0

g(D cos t) cos t dt =: g(D):(31)

Thus we obtain the averaged OTM

�n+1 = �n + �
1p
2Jn

�
Z
C

sin(�n � �)�g(D) dP �n ; (32)

Jn+1 = Jn � �
p
2Jn �Z

C

cos(�n � �)�g(D) dP �n : (33)

These can be written

�n+1 = �n + � @J �F (�; J ; 	�n) ; (34)

Jn+1 = Jn � � @� �F (�; J ; 	�n) ; (35)

where

�F (�; J ; 	) =

Z
C

�G(D(J; J 0;���0)) dP ; (36)

�G(D) =
1

2�

Z 2�

0

G(D cos#) d# : (37)
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It can be shown that �F is actually the average of F , jus-
tifying the comment in the first paragraph of this section.
Note the convolution structure w.r.t � in (36), which will
be important in what follows. In the CR case �G(D) = �

2
D.

The OTMs of (32), (33) and (34), (35) are only sym-
plectic to O(�2) as is easily checked. However, we can
interpret (34), (35) as an Euler–step with step length 1 of
a strictly Hamiltonian system with the time independent
Hamiltonian � �F (�; J;	�), that is,

d

dt
� = � @J �F (�; J;	

�) ; (38)

d

dt
J = �� @� �F (�; J;	�) : (39)

To see this, integrate these Hamiltonian equations from
t = n to t = n + 1 and apply Taylor’s theorem to ob-
tain (32) and (33) to O(� 2). (Note that this does not work
for the non-averaged OTM because the associated Hamil-
tonian flow is explicitly time dependent and the Euler step
does not give back the OTM to O(� 2).) Comparing these
maps and applying a Gronwall inequality for maps much as
in Section 2, shows that these two systems are O(�) close
on O(1=�) n�intervals, which is what we expect for the
relation between the exact model and the averaged model
of (32) and (33). Thus we take the Hamiltonian flow and
the associated Vlasov equations as our averaged model.

Scaling the independent variable by � := �t we obtain
coupled system of AVEs for 	 and 	�

0 = @�	+

@J �F (�; J ; 	
�)@�	�@� �F (�; J ; 	�)@J	 ;(40)

0 = @�	
� +

@J �F (�; J ; 	)@�	
�:�@� �F (�; J ; 	)@J	

�:(41)

These scaled AVEs allow an increase of the step size for
numerical integration by a factor of O(1=�) in comparison
with the non-averaged OTM.

5 QUASI–EQUILIBRIA

Now let 	 = 	� = 	e(J), then

�Fe(J ; 	e) := �F (�; J ; 	e)

=

Z 1

0

�Z 2�

0

�G(D(J; J 0;���0)) d�0
�
�

	e(J
0) dJ 0 (42)

is independent of � because of the convolution structure
and because D(�; �; #) is periodic in #.

Thus 	e(J) is an exact equilibrium of the averaged
kick–rotate system and thus we expect it to be a
quasi–equilibrium of the exact system for large times.

Figure 2 shows the evolution of the action density of one
of the bunches for two different initial phase space densi-
ties. The densities are plotted at a hundred out of 130,000
turns. In the case of the red crosses, the initial densities
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Figure 2: The action density

of both beams were the centered Gaussians 	�
0(�; J) =

	0(�; J) =
1

2�
e�J . To the eye there is no evolution, con-

sistent with the averaging approximation. In the case of the
green �-es, both initial densities had been given a � de-
pendence by shifting the Gaussians by �1�. Here one ob-
serves an oscillating action density, again consistent with
the averaging approximation.

For future reference we note that the ”weak-strong” am-
plitude dependent tune shift

�Q(J) :=
�

2�
!(J) :=

�

2�
@J �Fe(J ; 	e) (43)

depends on the choice of the equilibrium. The linear beam–
beam tune shift parameter is then � := �

2�
!(0).

6 THE LINEARIZED EQUATIONS

To determine the linearized equations we write

	(�; J; �) = 	e(J) + 	1(�; J; �) ; (44)

	�(�; J; �) = 	e(J) + 	�
1
(�; J; �) : (45)

Plugging into the AVEs and dropping the nonlinear terms
gives

@�	1 + !(J)@�	1 �	0e(J)@�
�F (�; J ; 	�1) = 0 (46)

and a corresponding equation with 	1 and 	�1 inter-
changed. The two equations can be decoupled by intro-
ducing

	� := 	1 �	�1 ; (47)

which yields

@�	
�+!(J)@�	

�
�	0e(J)@� �F (�; J ; 	�

1
) = 0 : (48)

The function �G(D(J; J 0;�)) is periodic in � and can be
expanded as

�G(D(J; J 0;�)) =
X
k2Z

Gk(J; J
0) eik� : (49)
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Here the Gk are real, symmetric in k (Gk = G
�k) and

symmetric under interchange of J and J 0 (Gk(J; J
0) =

Gk(J
0; J)). Let

	�(�; J; �) =
X
k2Z

	�

k
(J; �) eik� ; (50)

then the convolution structure of �F w.r.t. � gives

�F (�; J ; 	�) =

2�
X
k2Z

Z
R+

Gk(J; J
0)	�

k
(J; �) dJ 0 eik� : (51)

Therefore the Fourier modes of 	� are automatically de-
coupled in first order averaging and satisfy

0 = @�	
�

k
+ ik!(J)	�

k

�ik	0
e(J)2�

Z
R+

Gk(J; J
0)	�

k
(J 0; �) dJ 0:(52)

The ansatz

	�

k
(J; �) = ei
�

p
j	0

e
(J)j��

k
(J) (53)

leads to the Fredholm integral equation of the third kind

0 = (
 + k!(J)) ��
k
(J)

� 2�k

Z
R+

Gk(J; J
0)
p
	0
e(J);	

0
e(J

0)�

��
k
(J 0) dJ 0 : (54)

with a symmetric kernel. Thus it is easy to show that for
non–trivial solutions 
 is real. Also for 
 62 the range
of �k!(J) it can be transformed to a Fredholm IE of the
second kind. We have computed the solution of (54) for
the dipole modes (k = 1) using the equilibrium density
	e(J) =

1

2�
e�J and the behavior of ! defined in (43) is

shown in Fig. 3.
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Figure 3: The weak strong amplitude dependent tune shift

Figures 4 and 5 show the numerically computed eigen-
values 
i for the � and the � mode. We used Alexahin’s
[7] trick of transforming the interval [0;1) to [0; 1) by
the substitution J = I=(1 � I). The kernel of (54) is

then re–symmetrized by introducing��
k
(I) := ��

k
(I=(1�

I)) j1 � I j�1 and then discretized in 50 equidistant nodes
in I (1 � i � 50). In Fig. 4 one clearly sees the continuum
and the discrete eigenvalue
50 = 0 for the � mode. The �
mode spectrum in Fig. 5 shows the same type of continuum
and the discrete mode 
0 = �1:513 for the � mode. This
is in excellent agreement with our WMPT [8] and PF [9]
simulations where the Yokoya factor was found to be 1.51.
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7 SUMMARY AND OUTLOOK

We have derived an averaged Vlasov equation, which
both simplifies and clarifies previous pioneering work. The
AVE has exact equilibria which are quasi–equilibria of the
exact model. This is in excellent agreement with simula-
tion as discussed in Fig. 2. Linearization leads to � and �
modes in excellent agreement with simulation as shown in
Figs. 4 and 5, giving further confidence in the AVE.

The next steps in this one-degree-of-freedom model are:
(1) do a more refined analysis of the integral equation of
the third kind using the work of Warnock and Bart [10],
(2) study the near resonance case by generalizing the near
resonance formalism in [5] and [4], (3) include a tune split
in the off resonance case, (4) work out the error analysis
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as presented in Section 2 and (5) investigate numerics for
the AVE to see if the increased step size of O(1=�) which
is now possible can be used to advantage. We have already
extended the formalism to two degrees of freedom [11] and
plan to consider some form of the three degree of freedom
case.
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10 APPENDIX

In this appendix we state the basic theorems used in the
text.

Gronwall Inequality If � is a real constant, �(t) � 0
and �(t) are continuous real functions for a � t � b which
satisfy

�(t) � �+

Z t

a

�(s) �(s) ds ; a � t � b ; (55)

then
�(t) � � e

R
t

a
�(s) ds ; a � t � b : (56)

Besjes Inequality Let f(x; t) be quasiperiodic in t
with frequencies that satisfy a Diophantine condition and
let f have zero t–mean for fixed x, then there exist T > 0
and C(T ) > 0 such that

����
Z t

0

f(x(�s); s) ds

���� � C ; 0 � t �
T

�
: (57)

Birkhoff’s Ergodic Theorem Let (X;B; P ) a proba-
bility space, T : X ! X a measure preserving map and
f 2 L1(X;B; P ). Then

1. limn!1
1
n

Pn�1
k=0 f(T

kx) =: �f(x) exists almost
surely for x 2 X ;

2. �f(Tx) = �f(x) almost surely ;

3. �f 2 L1(X;B; P ) and k �fkL1 � kfkL1 ;

4. if A 2 B with T�1A = A, then
R
A
f dP =

R
A

�f dP
(this says that if I is the sub–�–algebra of B consist-
ing of all the T–invariant sets, then �f = E(f jI) al-
most surely)

5. 1
n

Pn�1
k=0 f Æ T

k L1

�! �f .

Note that in the case when T is ergodic, like in the case of
T : T 1 ! T 1, x 7! (x + �) mod 2�, � irrational, then I
is the trivial �–algebra and �f is constant almost surely, in
particular �f =

R
X
f dP .
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ODYSSEUS: AN ADAPTIVE 3D STRONG-STRONG BEAM-BEAM
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* currently at McKinsey & Co.

Abstract
ODYSSEUS is a 3D simulation code for the beam-

beam interaction in storage ring colliders. It is a true
strong-strong simulation in which no constraints are
placed on the distribution of particles in the beams. The
program achieves its speed by adaptively choosing
between alternative electromagnetic field calculation
methods. Linear tracking through the ring and wake fields
are included. We plan to include nonlinear tracking
through the ring in the next version of the code.

1 INTRODUCTION
In storage ring colliders the beam-beam force can cause

a blowup of the beam emittance, particle loss, or
instability. Because the beam-beam force is strongly
nonlinear, particle-tracking methods are useful for
determining the dynamics of the beams. Strong-strong
simulations, in which the force exerted by each beam on
the opposing beam is calculated, are capable of modeling
coherent instabilities of the beams. These simulations are
very time-intensive because of the need to repeatedly
calculate the electromagnetic field of each beam. To
include longitudinal as well as transverse degrees of
freedom, an unconstrained strong-strong code must use
special techniques to improve its speed.

ODYSSSEUS is an unconstrained 3D strong-strong
beam-beam simulation that includes broadband wake fields
[1, 2].  It is capable of rapidly calculating the
electromagnetic field of a beam divided into many
longitudinal slices because it adaptively chooses from a
variety of different field computation methods. Different
algorithms are used for the core, transverse tails, and
longitudinal tails of the beam. The parameters of the
program can be changed to model flat or round beams.
Inclusion of the longitudinal degree of freedom and wake
fields allows the investigation of previously inaccessible
physics.

A flowchart for ODYSSEUS is shown in Figure 1. The
individual calculations are described in detail in the
following sections.

2 PARTICLE TRACKING

2.1 Storage Ring
On each simulated turn through the storage ring, each

macroparticle is propagated through the linear optics of
the storage ring, including chromaticity, synchrotron
radiation excitation and damping, RF phase focusing, and
wake field deflections. macroparticles which have migrated
past a transverse aperture are no longer considered in the

simulation. Longitudinal and transverse short-range wake
fields are modeled as a sum of broadband resonators.
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Figure 1: Flowchart for ODYSSEUS.

2.2 Collisions
During its passage through the opposing bunch, the

transverse position of each macroparticle may change
appreciably because the vertical beta function at the
interaction point in many colliders is comparable to the
bunch length. ODYSSEUS handles the longitudinal
variation of the electromagnetic field of the beam by
dividing the beam into slices. The simulation collides
each pair of slices sequentially, updating the transverse
momenta and positions of each macroparticle after each
pair-wise collision of slices. For each slice collision the
slice electromagnetic field is calculated by one of the
methods described below. Macroparticles undergo
longitudinal oscillations and migrate from slice to slice,
so on each turn the macroparticles are sorted according to
their longitudinal position and are reassigned to slices.
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3 ELECTROMAGNETIC FIELD
CALCULATION

3.1 Beam Core
If the number of macroparticles, N , within a slice is

very small, the integrated field at a probe beam
macroparticle is calculated from radius vector from each
opposing source beam macroparticle. Because it involves
a sum over source-probe particle pairs, the number of
calculations goes as N2, making this method efficient only
for N < 50.

For larger values of N , the electromagnetic field is
calculated on a rectangular grid (Particle-In-Cell method)
using pre-calculated Green’s functions for charges on the
grid points. The macroparticle charge is assigned to the
grid points using one of the two area-weighted techniques
described below. If the number of grid points Ng is less
than about 200, the convolution of the charge density and
Green’s function is done as a summation in coördinate
space and the number of calculations required goes as Ng

2 .

For larger values of Ng, the convolution of the Green’s
function and charge density is done as a multiplication in
wavenumber space. The speed of this method is limited by
the speed of the necessary Fourier transform to
wavenumber space and the inverse transform back to
coördinate space. Thus the number of calculations goes as
Nglog2Ng. To suppress edge effect problems in the Fourier
transforms the size of the wavenumber space can be
doubled in both directions and padded with zeros [3],
although this is both to be unnecessary for the typical,
Gaussian-like, beam charge distribution.

The grid itself is adaptive. The number of cells in each
transverse direction and their aspect ratio change as needed
to cover the beam, with a constraint on the aspect ratio,
described below in Section 4.2.

3.2 Beam Tails
The tails of the beam, typically taken to be particles

with a displacement of more than (10/3)σ in any direction,
are treated differently than the core particles. The tail
particles have very little influence on the beam-beam
force. They do respond to the beam-beam force, so a weak-
strong calculation is used for them.

Longitudinal tail particles are subject to forces from the
core of the opposing beam. A full calculation of the field
from the opposing (strong) beam slice is performed, but
the tails are assumed to have no effect on the strong beam
(see Figure 2). Alternatively, the user may choose a
strong-strong calculation for all slices.

The transverse tail particles are subject to a beam-beam
force of similar magnitude to that experienced by the core
particles. However, the high-wavenumber component of
the charge distribution of the core has little influence on
the field in the transverse tails, so the field used is that of
a Gaussian charge distribution with the same charge and
first- and second-order moments as the slice. The field

from this Gaussian charge distribution is calculated from
the rational approximation of Talman and Okamoto [4].

Weak -
Strong

Strong -
Strong

Weak -
Strong

Figure 2: The beam is divided into longitudinal slices and
the collision of each pair of slices is simulated in

sequence. Slices are marked as either “weak” (white) or
“strong” (gray) and the appropriate technique is applied
when they interact. No two weak slices ever interact.

3.3 Interpolation Techniques
Whenever a grid-based method is used, it is necessary to

interpolate from the fields on a grid to arbitrary probe
macroparticle locations and to deposit charge on the grid
from arbitrary source macroparticle locations.
ODYSSEUS gives the user a choice between three
interpolation methods: Nearest-Grid-Point (NGP); four-
point Cloud-In-Cell (CIC); and a nine-point extension of
the Triangular-Shaped-Cloud (TSC) technique [3]. Lower
order interpolation methods tend to introduce noise into
the simulation. Higher order interpolation methods reduce
this noise but tend to broaden small features in the charge
distribution. In ODYSSEUS a “sharpening function” is
used during the convolution of the charge density and
Green’s function in wavenumber space to compensate this
broadening.

4 SPEED AND ACCURACY
CONSIDERATIONS

4.1 Speed
ODYSSEUS is being run on a farm of 500 MHz Alpha

based processors that operate under Linux. The fast
Fourier transforms typically take about 90% of the
computation time. The code is not parallelized, because
one typically wishes to run the code with a large set of
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varying parameters (e.g., for tune scans). The speed of
ODYSSEUS may be compared with that of a non-adaptive
Particle-In-Cell (PIC) calculation by setting its options to
include only the PIC method. The calculation is found to
run 5 times faster with the adaptive options.

4.2 Field Error Due to Transverse Grid
For round beams a field calculation grid can be

constructed out of square cells with equal numbers of cells
in each dimension. This construction allows for accurate
field calculation with a low number of cells. In contrast,
the extreme aspect ratios of flat beams force the use of
either large numbers of cells or individual cells with large
aspect ratios. The Green’s function technique fails to
provide a good approximation to the electromagnetic field
when the cell aspect ratio is far from unity, especially
when a scalar Green’s function is used. ODYSSEUS uses
a two-component Green’s function and limits the cell
aspect ratio. This limit is typically set to 1.4.

4.3 Field Error Due to Longitudinal Slicing
The electromagnetic field error introduced by dividing

the beam into longitudinal slices is a source of noise that
tends to increase the emittance of the simulated beam.
This is a problem when simulating flat beams with a low
natural emittance and large vertical beam-beam parameter
ξy when the number of slices is small. The noise produces
a maximum possible value of ξy in the simulation. In a
particle-tracking simulation using longitudinal slices of
uniform length ∆z, we find that the maximum ξy is

ξ
π

β
δy

y

z,max

*

= 4 3

∆
(1)

where βy
*  is the vertical beta function at the interaction

point and δ is the transverse damping decrement. Other
physical or numerical effects may further reduce ξy. Figure
3 shows the vertical beam-beam parameter as a function of
the number of slices. This behavior is consistent with the
limit of Eq. (1).
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Figure 3: Vertical beam-beam parameter ξy as a function
of the number of slices used in the simulation. The

straight line is an estimate of the maximum possible
equilibrium ξy from Equation 1.

5 CONCLUSIONS
The adaptive nature of ODYSSEUS allows it to run

several times faster than a code using PIC methods alone.
Simulations of several tens of thousands of turns can be
completed in a reasonable amount of time, varying from
hours to several days, depending on the parameters of the
calculation.

ODYSSEUS has been applied to tune-plane scans with
CESR parameters to determine the operating point with
the best luminosity; to tune-plane scans at lower energy
for the proposed CESR-c; to quantifying the effect of
damping time on the maximum beam-beam parameter;
and to determining the mechanism of the beam-beam limit
in CESR. The luminosity tune scans agree very well with
observations in CESR [5]. In the next version of
ODYSSEUS we plan to include calls to BMAD [6], a
particle-tracking code, to realistically model the remainder
of the ring.
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A Hybrid Fast Multipole Method applied to beam-beam collisions in the
strong-strong regime.

W. Herr, M.P. Zorzano, CERN, and F. Jones, TRIUMF

Abstract

The strong-strong interactions of two colliding beams
are simulated by tracking the motion of a set of macropar-
ticles. The field generated by each distribution is evalu-
ated using the Fast Multipole Method (FMM) together with
some elements of particle-mesh methods. This technique
allows us to check the exact frequencies of the coherent
modes and the frequencies of oscillations of individual par-
ticles in the beam. The agreement between the simulations
and analytical calculations is largely improved. Further-
more it is an efficient method to study the coherent modes
in the case of separated beams.

1 INTRODUCTION

Two colliding beams exert a force on each other which is
defocusing for beams of equal polarity as in the case of the
LHC. Solutions of the linearized Vlasov equation show that
for round beams and in the case of one bunch per beam with
equal parameters (intensity, beam size, betatron tune) two
coherent dipole modes of oscillations appear: the σ mode,
whose frequency is equal to the unperturbed betatron tune,
and the π-mode with a tune shift of Y = 1.21, where Y is
the Yokoya factor [1], times the beam-beam parameter ξ.

In this paper the transverse coherent motion of two col-
liding proton beams is studied by multiparticle tracking. In
a self-consistent model of the coherent interaction, the dis-
tributions of both beams evolve as a consequence of the
mutual interaction and are used at the interaction points
to calculate the force on the individual particles. A num-
ber of studies have been done for LHC using the so-called
“soft Gaussian model” [2]. This model assumes the force
experienced by a particle when traversing the counter ro-
tating beam as originating from a Gaussian beam distribu-
tion with variable barycenters and rms beam sizes. This al-
lows the use of an analytical expression for the forces. This
Gaussian model cannot take into account the non-Gaussian
deformations of the distribution and as a result underesti-
mates the force and yields a Yokoya factor that is slightly
smaller (Y = 1.1 in our case). This symptom has also
been recently discussed by Yokoya [3]. In the worst case
this simplification can inhibit the appearance of coherent
effects. Nonetheless the use of the analytical expression
of the force generated by a Gaussian beam allows simu-
lations in a reasonable computing time and it is therefore
more convenient for studies with multiple bunches.

It has been predicted [4, 5] that the coherentπ-mode may
not be Landau damped for certain strong-strong conditions

and therefore an accurate knowledge of the Yokoya factor
is highly desirable.

2 SIMULATIONS BEYOND THE SOFT
GAUSSIAN MODEL

To avoid this problem and to increase the accuracy of
the simulations, we have to introduce a field solver for an
arbitrary distribution of charges in space. The choice of the
solver is constrained by the problems under investigation:

• Large number of particles in simulation ( 104).

• Separated beams (separation between zero and 10
times the beam size or more).

A direct integration of forces (particle-particle methods) is
ruled out since the necessary time grows with the square of
the number of particles (O(N 2

p )). For the number of parti-
cles used in our simulation this is impossible. Other pos-
sible solvers employ so-called particle-mesh methods and
have been shown to give good results [6]. Their advantage
is speed since the number of computations is smaller and
depends on the number of grid points Ng: (O(NglnNg)).
A strong disadvantage is that particle-mesh methods have
problems handling non-uniform distributions. For the case
of separated beams (as in our case with the important ef-
fect of long-range collisions) most of the space is basically
empty. Moving or adaptive grids may be used for that pur-
pose, but may lead to a rather complicated structure.

Another possibility is to use Fast Multipole Methods
(FMM). In this algorithm the potential or force acting on
a particle is divided into two components. The compo-
nent of close particles is computed directly and between
distant particles the potential is approximated by multipole
expansion [7, 8]. This method is therefore well adapted
to handle problems like separated beams. Problems with
FMM are close encounters and ”charge-overloading”, i.e.
for the LHC bunches 1011 particles are represented by 104

macroparticles.

3 BASIC HFMM ALGORITHM

For our problem we studied a modified version of FMM,
a Hybrid FMM (HFMM) [9]. It resembles a particle
mesh method for the handling of charges and super par-
ticles, however the forces on the superparticles are evalu-
ated using the FMM. Smoothing can help to avoid charge-
overloading. The HFMM is a robust implementation of a
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Fast-Multipole Method (FMM) field solver, which is de-
signed to solve the field for an arbitrary collection of dis-
crete charges. It divides the solution domain into a grid
and a halo area. The grid area is subdivided into a hierar-
chical tree of square regions. In the first step of the cal-
culation, the macroparticles inside the grid are assigned to
grid points. All macroparticles outside the grid are treated
as discrete, independent superparticles and form the halo.
The charge assignment can be done with a ’nearest-grid-
point’ method, i.e. the charge is assigned to the nearest
grid point. This is the simplest method, however the field
values are not continuous and the results are more noisy.
Alternatively one can use the cloud-in-cell (CIC) charge
assignment where the charge is shared between the neigh-
bouring grids points. This method gives continuous field
values but requires more book-keeping.

Finally, multipole expansions of the field are computed
for every point, i.e. for each grid point as well as for every
halo particle, and the program derives the resulting forces
on the particles of the counterrotating beam. In the case
of a CIC charge assignment, appropriate interpolation be-
tween the fields calculated for the grid points have to be
applied. The grid size and shape does not have to follow
any special geometry and can be chosen freely to achieve
the desired speed and precision, depending on the problems
under investigation. Unlike other Poisson solvers, the grid
points with no charges assigned are left out of the compu-
tation and the number of computations scales roughly with
the number of particles. More details of the method used in
this report are found in [9]. This method is already imple-
mented in the ACCSIM program [10] to study space charge
problems.

In this work we have implemented the HFMM in our
beam-beam simulation program to evaluate the force on a
test particle generated by an arbitrary charge distribution.
This will be applied to study the strong-strong collision of
two bunches colliding at one interaction point (IP). We will
study the coherent modes that are excited in the collision
of two equal round bunches similar to those of LHC, when
colliding head-on or separated by a constant offset at one
interaction point (long-range interactions). This will en-
able us to obtain the correct Yokoya factor by multiparticle
tracking and in a later stage to study in detail the modes
excited by long-range interactions. Finally, it should allow
us to study the possible emittance growth of collisions of
partially overlapping bunches [11].

4 TRACKING WITH HFMM.

We simulate the collision of two strong proton beams.
Our variables are: horizontal position x, vertical position y,
horizontal angle vx = x′, and vertical angle vy = y′. The
prime denotes the derivative with respect to longitudinal
position s, e.g. x′ is the slope of the horizontal trajectory.

Each of the beams has one bunch that is represented by
a set of Np macroparticles, whose trajectories are followed
over n turns, assuming linear betatron motion without cou-

pling and a beam-beam collision at one interaction point
(IP). At the IP every particle in the bunch experiences a
deflection by the field of the counter-rotating beam that de-
pends on its position.

The deflection applied to a single particle in one of the
beams is calculated using the HFMM.

The linear map from one IP to the next is(
x(n + 1)
vx(n + 1)

)
=

(
cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

) (
x(n)

vx(n) + ∆vx(n)

)
(1)

An equivalent map is applied in the vertical plane, (y, vy).
The horizontal deflection experienced at the interaction

point is:

∆vx(n) =
rpN

∗

γ
Ex(x, y) (2)

where Ex(x, y) is the horizontal force evaluated with the
HFMM technique at the particle position (x, y). The num-
ber of particles in the opposing beam is N ∗.

For the simulation of parasitic (long-range) collisions,
the same model is employed. The two beams collide with a
horizontal separationLx (in units of σx). For a low β inser-
tion we have about 90◦ phase advance between the IP and
the long-range collision region. Since in the LHC the be-
tatron phase advance between long-range collisions on one
side of the interaction region is very small, we can lump
all npar parasitic collisions into a single one, to reduce the
computing time. This overestimates the effect slightly be-
cause the bunches oscillate with different phases with re-
spect to each other.

Because a static dipole kick would change the closed or-
bit of the bunch, the static kick from the long-range colli-
sion must be subtracted [12]. The beam-beam long-range
kick used in our simulation code is then

∆vx(n) =

npar
2rpN∗

p

γ
(Ex(x + Lxσx, y)−Dx(Lxσx, 0)). (3)

where Dx(Lxσx, 0)) = −1/Lxσx(1.0− exp (−L2
x

2.0 )) is
the (constant) dipole kick generated by a Gaussian distribu-
tion at a distance x = Lxσx. This assumes that a closed or-
bit exists [11] and the bunches oscillate coherently around
this orbit. At the LHC, there are about npar = 16 par-
asitic encounters on each side of an IP, with a minimum
transverse separation of Lx = 7.5 (in units of σx). The
fractional part of the horizontal and vertical tunes are 0.31
and 0.32, and unlike LEP [13], the results are not strongly
affected by dynamic beta effects. In Figs.1 and 2 we show
comparisons between the beam-beam kicks calculated with
the HFMM and those obtained from an analytical expres-
sion, both for the case of round, exactly Gaussian beams.
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In the Fig.1 we test the different methods for the charge as-
signment for a grid spacing of 0.25σ with a grid of 81x81,
where 81 is the number of grid points in each plane. Thus
the grid for the head-on collisions covers the amplitudes
between −10σ to +10σ. While the ’nearest-grid-point’ as-
signment gives visibly discontinuous values, the force eval-
uated with the CIC assignment is continuous and therefore
preferable.

In the Fig.2 we have used a different grid spacing of
0.10σ with a grid of 201x201 to test the obtained accuracy.
The effect of the discontinuous values in the ’nearest-grid-
point’ assignment is now smaller and barely visible as one
could expect. The grid size for the simulation is a com-
promise between precision and computing speed. A grid
spacing of 0.1 σ or below gives good results. For most
simulations we have therefore chosen such a spacing and
the Cloud-in-Cell (CIC) charge assignment.

5 SIMULATION RESULTS

In this section we shall give quantitative results on the
coherent modes for head-on as well as some first results
with long-range interactions. Since the symmetry of beam
parameters plays an important role for the coherent mo-
tion, we study the relevance of intensity differences as well
as tune and beam size asymmetries. They are expected to
make it more difficult to maintain a coherent motion and
will eventually help to avoid it.

5.1 Head-on collisions with equal betatron
tunes and intensity

First let us consider the strong-strong case and head-on
collisions of two round bunches, using the previous maps.
The statistical variation in the initial distribution of parti-
cles is sufficiently large to excite the coherent modes. We
start with equally strong beams, i.e. the intensity ratio RI

between the weaker and stronger beam is 1.0. If we per-
form a harmonic analysis of the motion of the barycentre
of one bunch, we find two coherent modes. One is located
at the unperturbed tune Q, the other has a lower frequency.
In Fig. 3 we plot the amplitude frequency spectrum. The
horizontal axis gives the tune shift from the unperturbed
tune Q in units of ξ (i.e.: w = ν−Q

ξ , for the round beam
case ξx = ξy = ξ = 0.0034, Qx = 0.31, Qy = 0.32). For
the other beam and the other plane a similar picture is ob-
tained. Analysing the spectra of the distance between the
centroids, i.e. the expressions < x(1) > − < x(2) > and
< y(1) > − < y(2) >, the coherent mode at the unper-
turbed frequency disappears. On the other hand, when we
analyse the sum of the centroids (< x(1) > + < x(2) >,
< y(1) > + < y(2) >) the lower mode frequency disap-
pears. We can thus identify the mode at the unperturbed
frequency as the so-called σ-mode, for which the centroids
of the bunches oscillate in phase with equal frequencies and
amplitudes. The lower frequency mode is called π-mode
and in this mode the centroids oscillate also with equal fre-

quencies and amplitudes but in opposite phase. The mo-
tion of the bunch centroids is a superposition of these two
modes.

Between the π- and the σ-mode in Fig. 3 we find the
incoherent continuum. A single particle crossing the op-
posing beam at a distance from its axis feels a defocusing
force (or focusing force in the case of oppositely charged
beams like LEP), which leads to a change in its tune. For
particles near the centre of the counter rotating beam this
tune shift is equal to −ξ. For particles further away the
defocusing force is smaller (due to the non-linearity of the
beam-beam force) and vanishes asymptotically. This cre-
ates an incoherent tune spread which extends from 0 to−ξ.

In our simulations we find the π-mode at a tune shift of
exactly 1.21 ± 0.005 in units of ξ (and ξ = 0.0034). The
π-mode is thus shifted outside of the continuum. The shift
calculated with HFMM is therefore in excellent agreement
with the theoretical prediction [1, 4].

5.2 Head-on collisions with equal betatron
tunes and different intensity

It has been predicted [4] that for intensity ratios of 0.6
or lower, the π-mode merges with the continuum. In the
soft Gaussian model this prediction cannot be tested ex-
actly since the π-mode tune shift is underestimated [2, 3].
In this section we can now make a more precise quantita-
tive comparison. Fig. 4 clearly confirms this prediction: the
π-mode merges into the incoherent spectrum at Alexahin’s
ratio of 0.6 and is Landau damped. In the LHC the ex-
pected bunch to bunch intensity difference may be as large
as ± 20%. Although this alone will not be sufficient to
recover Landau damping, together with other uncertainties
(see e.g. section 5.4) and suggested remedies (see next sec-
tion) it should simplify the damping of the modes.

5.3 Head-on collisions with different betatron
tunes

The first proposed remedy to avoid coherent beam-beam
modes was to decouple the two beams by using different
fractional tunes for their tunes [14]. This is possible in
the LHC since we have two separate rings. Possible un-
wanted side effects of such a scheme were discussed in
[15]. The sensitivity to the expected small tune differences
is demonstrated here quantitatively. While the fractional
part of beam 1 is kept at 0.310, the tune of the second beam
is slightly varied. For a tune difference between the two
beams of more than approximately ≈ 0.7 ξ the π-mode
disappears into the continuum as shown in Fig.5.

5.4 Head-on collisions with different beam
sizes

Similar to an intensity imbalance, different beam sizes
of the two beams can lead to loss of coherence and damped
coherent modes. In Fig.6 we show the spectra for beam
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size ratios of 0.90 and 0.70. Since the beam size (of the sec-
ond beam) is now smaller, the tune shift is slightly larger
than in the original case. While for a ratio of 0.90 the π-
mode is still very visible, it has merged with the incoherent
spectrum for 0.70. The mechanism is the same as for a
beam intensity imbalance. At this point one can speculate
whether the size imbalance can be compensated by an in-
tensity imbalance, adjusted to give the same beam-beam
tune shift parameter ξ. The result of such a simulation is
shown in Fig.7 with the beam radius of the second beam re-
duced to 0.7, but with a smaller beam intensity (50%). The
beam-beam parameter is therefore the same. We observe
a clear coherent mode again. This observation however is
non trivial. When the beams have different sizes and geo-
metrical distributions, the fields seen by the two beams are
rather different, although the tune shift parameter for the
small amplitude particles is the same. The reason is that
the larger beam experiences a very non-linear force for par-
ticles at much smaller amplitudes than the smaller beam.
Particles at larger amplitudes must therefore behave rather
differently. For the single particle behaviour, i.e. popula-
tion of beam tails and lifetime, this is known to be of ex-
treme importance [16, 17]. For a coherent oscillation it is
mainly the oscillation frequency that must be the same and
it is known that for the head-on collisions studied in this
example, it is mainly the core of the beam contributing to
the coherent oscillation and the tune shift. The core parti-
cles experience always an almost linear force proportional
to the beam-beam parameter and this explains the observa-
tion.

Similar observations have been made in simulations of
asymmetric colliders such as PEP-II [18] where the energy
transparency condition was studied, i.e. where the energy
asymmetry was compensated by an asymmetry of the beam
currents.

5.5 Coherent modes from long-range collisions

Since the transverse distance between two bunches at the
parasitic collision is larger than the rms beam size, the ef-
fects will be similar to the coherent interaction of rigid,
point-like bunches. In that case the contribution of parasitic
crossings to the tune shift of coherent oscillation modes
would be

∆νπ = 2× (incoherent long-range tune shift) ∝ 1/L2
x

∆νσ = 0.

Moreover, the incoherent long-range tune shifts for beam
separations larger than ≈ 1.5 σ have different signs for the
two planes. Both, the coherent and incoherent tune shifts
depend on the separation and for sufficiently large separa-
tion they scale with the inverse of the separation squared.

Most important however, the width of the incoherent
spectrum (tune spread) of long-range collisions alone de-
pends on the separation and in the LHC is smaller than the
tune spread from head-on collisions [19, 20]. The distance
of the π-mode from the edge of the incoherent spectrum

is therefore rather different from the head-on case and one
must expect a different behaviour. In particular the nec-
essary measures to merge the coherent modes with the in-
coherent spectrum must be at least quantitatively different.
In this report we have a first look at the dynamics of long-
range collisions separately to demonstrate the differences.
For an evaluation of the necessary operational parameters,
both head-on as well as long-range collisions must be con-
sidered together, like it was done with the Gaussian approx-
imation [2]. A more complete study should also include
multiple bunches and interaction points and will be treated
at a later stage [21].

5.6 Simulation of long-range collisions

The simulation of coherent modes from separated beams
is a good example where the HFMM can be used to great
advantage. In a conventional particle-mesh method, most
grid points between and around the beams are empty and
with a typical separation around 10 σ the necessary com-
puting time becomes unacceptable. With the HFMM we
have the option to either treat the opposing beam as a halo
or to choose the grid large enough to cover both beams.
Although at first sight the second option looks like a con-
ventional grid method, the advantage is clear: the fields
are calculated with the FMM field solver only at the grid
points with charges and the saving in computing time is
large. Treating the opposing beam as a real halo object
usually requires more time than covering the whole area.
In Fig.8 we show the horizontal spectrum for long-range
collisions with a horizontal separation Lx = 10.0 (in units
of σx). We plot it again as a function of the distance to the
unperturbed tune, normalized to the head-on beam-beam
tuneshift ξ, to allow a quantitative comparison to the head-
on modes. For one of the figures (left) the particles in the
opposing beam were treated as halo particles, i.e. were not
covered by the grid. In the right figure the grid was ex-
tended to 15σ, i.e. included both beams. Both methods
give the same results, however the computing speed is very
different. The treatment as real halo is very time consum-
ing. The real difference to a particle-mesh code then comes
from the fact that only grid points with particles are treated,
thus the number of computations scales like O(Np). The
computing speed difference is about a factor 2.5 between
the two options, therefore in all simulations we choose the
procedure to cover the whole area with a grid, including
both beams.

Like in the case of head-on coherent modes we identify
the σ- and π-mode easily by analysing the sum and the
difference of the barycentres separately. The peaked struc-
ture between the two modes represents again the incoherent
continuum, this time arising from the long-range interac-
tion. As expected, the coherent shift is two times larger
than the shift of the incoherent spectrum.

139



5.7 Long range collisions with equal tunes

Fig. 9 shows the horizontal and vertical spectra of cen-
troid oscillations of a bunch subject to long-range colli-
sions with a horizontal separation of Lx = 10.0σx. To
obtain realistic tune shifts, we have lumped all 32 long
range interactions of a LHC interaction region into a sin-
gle collision. The optics and geometry of the interaction
regions permits this simplification [2, 12]. The horizon-
tal axis gives the tune shift relative to the unperturbed
tune Q in units of the head-on beam-beam parameter ξ:
w = ν−Q

ξ . In the horizontal plane, the tune shifts are pos-
itive, and the coherent dipole π-mode has twice the inco-
herent tune shift. In the vertical plane, the tune shifts are
negative. The normalized tune shifts of the π-modes are
(wx, wy) = (0.645±0.005,−0.644±0.005). In Fig.10 we
show the results for a separation of 6.0 σx and find values
of (wx, wy) = (1.828 ± 0.005,−1.762 ± 0.005). Com-
paring Figs. 9 and 10, the larger tune shift for the smaller
separation is clearly visible as well as the increased tune
spread of the incoherent spectrum. Both scale with 1/L2

x

as expected.

6 CONCLUSIONS.

We have implemented the HFMM technique to describe
the beam-beam collision of two beams in the strong-strong
regime. This allows us to study, by means of multi-particle
tracking and with no approximation in the evaluation of the
electromagnetic force, the coherent modes of oscillations
of two colliding beams. Future improvements shall extend
this work to several bunches per beam and, in particular,
will allow us for the first time to study details of the modes
excited by long-range interactions.
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Figure 1: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.25σ grid (81x81) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 2: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.10σ grid (201x201) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 3: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams.
The grid covers from −10σ to 10σ, the rest of the particles being treated as halo particles. The horizontal axis gives the
tune shift from the unperturbed tune Q in units of ξ, i.e. w = ν−Q

ξ . The vertical axis is the corresponding amplitude. The
π- and σ- oscillation modes are clearly visible.
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Figure 4: Frequency spectrum of the bunch centroid motion (over 2 17 turns, N = 104 macroparticles) for round beams
and intensity ratio RI = 0.65 (left) and 0.55 (right).
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Figure 5: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
different fractional tunes of the second beam: 0.312 (left) and 0.313 (right). The tune of the first beam is kept at 0.310.
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Figure 6: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) of 0.90 (left) and 0.70 (right).
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Figure 7: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) = 0.70 and intensity ratio RI = 0.5.
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Figure 8: Spectrum of the horizontal centroid motion for long-range collisions with horizontal separation L x = 10.0 (in
units of σx) and no head-on collision (215 turns, N = 104 macroparticles). For the left figure the grid did not cover both
separated beams, i.e. the particles in the second beam were treated as halo particles. In the right figure the grid covered
both beams.
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Figure 9: Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collisions with horizontal
separation Lx = 10.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
to long-range collisions have opposite sign in the two transverse planes. The coherent π-mode is at twice the incoherent
tune shift.
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Figure 10: Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collision with horizontal
separation Lx = 6.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
to long-range collisions have opposite sign in the two transverse planes.
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Fourier spectrum of coherent modes, from HFMM
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Figure 11: Spectrum of the horizontal centroid motion for head-on together with long-range collision with horizontal
separation Lx = 6.0 (in units of σx) 215 turns, N = 104 macroparticles. planes. In the right figure π-oscillations only.
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Two Methods for Simulating the Strong–Strong Beam–Beam Interaction in
Hadron Colliders
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Abstract

We present and compare the method of weighted macro
particle tracking and the Perron–Frobenius operator tech-
nique for simulating the time evolution of two beams cou-
pled via the collective beam–beam interaction in 2–D and
4–D (transverse) phase space. The coherent dipole modes,
with and without lattice nonlinearities and external excita-
tion, are studied by means of the Vlasov–Poisson system.

1 INTRODUCTION

Simulations of coherent effects in many particle sys-
tems traditionally employ Particle–in–Cell (PIC) methods
with an ensemble of macro–particles generated by the
Monte Carlo method. We have developed two alterna-
tive approaches, the discretized Perron–Frobenius method
(PF) and weighted macro–particle tracking (WMPT). We
have written several codes, a PF/Fokker–Planck code in
one degree of freedom (including diffusion and dissipa-
tion) and the hadron codes BBPFmD (Beam–Beam Perron–
Frobenius) and BBDeMomD (Beam–Beam Density and Mo-
ments, i.e. WMPT) with m = 1; 2 in m degrees of free-
dom. The PF/Fokker–Planck code is described in detail in
[1]. Here we will concentrate on the completely symplectic
hadron codes.

2 MODELS AND METHODS

2.1 The Ring Model

We assume a ring with one IP at � = 0 and two counter–
rotating bunches. We only treat head–on collisions here
and our reference point at which the distribution is studied
is directly before the IP (� mod 2� = 0�). In what follows
we will always use the convention that if some parameter,
or dynamical variable X describes one beam, then X � de-
scribes the other beam.

Let  n(~z) and  �

n
(~z) (~z := (q; p)T) denote the normal-

ized phase space densities of the beams at � = 0� + 2n�
(Here and in the following we use := or =: if we want to
emphasize that the quantity on the left or right respectively
is being defined). Then the representations of the one turn
map for the unstarred beam from turn n to n + 1, imple-
mented in BBPFmD and BBDeMomD so far, are

~T [ �
n
] = ~A Æ ~K[ �

n
] (1)

where

~A =

8><
>:

~R : linear
~R

1

2 Æ
~Kp Æ

~R
1

2 : lin. & pert.
~R�

�

2

Æ
~Ks Æ

~R0
Æ
~Ks Æ

~R+
�

2

: lin. & IR-sxt.
:

(2)
The ~R’s represent the linear stable symplectic parts of the
lattice (~R(~z) = R~z). At the moment the two degree of
freedom versions of our simplified ring models have block
diagonal representations of the linear lattice, in other words
they do not contain linear coupling. The ~K’s are symplec-
tic kicks. In particular, ~K[ �

n
] is the collective beam–beam

kick on the unstarred beam due to the starred beam, ~Kp is
an RF–dipole and/or a multipole kick (up to dodecapole)
and ~Ks is an IR–sextupole. In the case of a completely
linear lattice, R is parameterized by the tune Q and the un-
perturbed Courant–Snyder parameters �0 and �0 at the IP.
In the second case, where a perturbation is included in the
center of the arc, R

1

2 each have a phase advance of �Q
so that R = (R

1

2 )2. In the third case, R�

�

2

and R+
�

2

trans-
form the Courant–Snyder parameters at the IR–sextupoles
to those at the IP with a phase advance of �=2 and R0 is
parameterized by the phase advance 2�(Q � 1=2) and the
Courant–Snyder parameters at the IR sextupoles. Note that
all three possible ring layouts are mirror symmetric around
the axis through the IP and the center of the arc. The dif-
ferent different ring layouts are shown in Figure 1. The
collective kick ~K[ ] is given by

~K[ ](q; p) =

�
q

p+K[ ](q)

�
; (3)

K[ ](q) = �

Z
Rm

g(q; q0)�(q0) dmq0 (4)

with a model dependent kernel function g, a strength pa-
rameter � and the spatial density �(q) =

R
Rm

 (q; p) dmp.
The ring models described in Eq. (2) are illustrated in Fig.1,
where S.O.D.: : : refers to sextupole, octupole, decapole,
etc. and RFD refers to RF–dipole. For the codes in two de-
grees of freedom, we plan to implement the MAD–interpreter
and the map generators from the spin code SPRINT [2] and
the higher order symplectic integrators described in [3].

The particle trajectories are propagated turn by turn via

~zn+1 = ~T [ �
n
](~zn) ; ~z

�

n+1 =
~T �[ n](~z

�

n
) (5)

and since the maps are measure preserving, the densities
evolve via

 n+1(~zn+1) =  n(~zn) ;  
�

n+1(~z
�

n+1) =  �
n
(~z�
n
) : (6)
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Figure 1: Ring models.

Note that the ~T and ~T � are explicitly distinguished, al-
lowing for different parameter sets describing the starred
and the unstarred lattice. Equations (1–6) define a repre-
sentation of the beam–beam Vlasov–Poisson system using
maps.

In highly relativistic beams the beam–beam force for
head–on bunch crossings with zero crossing angle is essen-
tially transverse. In this approximation the collective kick
is determined by the solution of a 2–D Poisson problem,
��u = f . The Green function in two dimensions for open
boundary conditions is given by

G(x; y; x0; y0) = � 1

2�
log
�p

(x� x0)2 + (y � y0)2
�

:

(7)
We started our study by analyzing three different limits
of the beam-beam interaction giving one degree of free-
dom. Here we shall discuss only the limit studied by Chao
and Ruth (CR) [5], which is meant to model beams with
large horizontal-to-vertical aspect ratio, a case often found
in electron machines. The force on a particle in one beam
from the other beam is computed as though it came from
infinite planes of charge, perpendicular to the vertical (y)
axis, and distributed in y with some density. This force is
concentrated in time, however, at the instant of collision.
The motion is in the y-direction only. Although not quite
appropriate for hadron machines, the model is an attractive
starting point because it is the only case in one degree of
freedom for which a completely self-consistent calculation
can be done with an operation count O(N logN) in the
WMPT method. Similarly, it is particularly easy to imple-
ment in the PF method. The Green function of the corre-
sponding Poisson problem is equal to �jy � y 0j=2, while
its gradient �sgn(y � y0)=2 is proportional to the kernel
of Eq. (4). See [5, 6, 4] for more information on the three
limits giving one degree of freedom.

2.2 The Perron–Frobenius Method

The Perron–Frobenius method [1] and weighted macro-
particle tracking are both based on the evolution law (6)
for the phase space densities given a measure preserving
map. We can rewrite Eq. (6) in the form  n+1(~z) =

 n(~T
�1[ �n](~z)) and an analogous equation for  �

n+1.

This defines the action of the Perron–Frobenius operator
associated with (1) on the densities. Now consider a rect-
angular mesh for m = 1: f~zijg, ~zij := (i�q ; j�p),
where �q and �p are the grid spacings in configuration
and momentum space respectively and the integers i and
j satisfy �nq

2
� i � nq

2
and �np

2
� j � np

2
. In the

case of a 2m dimensional phase space (m > 1), i and j
are m–dimensional multi–indices and �q , nq, etc. are m–
dimensional vectors and we have the obvious generaliza-
tion of the above rectangular grid. Given approximations
	ij(n) and 	�

ij(n) to  n(~zij) and  �

n(~zij) and an l-th or-
der local interpolation scheme (“stencil”) S l[f ](~z) which
interpolates values of f at neighboring mesh points of ~z,
we can update 	(n) to 	(n+ 1) by

	ij(n+ 1) = Sl[	(n)]
�
~T�1[	�(n)](~zij)

�
: (8)

For example in the kick–lattice model of Eq. (1) we have
~T [ �n] =

~R Æ ~K[ �n] and ~T�1[ �n] =
~K�1[ �n] Æ ~R�1. To

compute this given the 	�

ij(n) we first sum over j to get an
approximation %�i (n) of the spatial density, ��n(qi), on the
spatial sub–mesh fqig and then we use %�(n) to determine
the kicks at the mesh points qi. Spatial interpolation then
gives the kicks at all q. Thus we obtain ~T�1[ �n](~zij) �
~K�1[	�(n)](R�1~zij) where R is the matrix for the lin-
ear lattice. These points are not mesh points so we need
the interpolant of 	(n) in (8). Note that this procedure
uses two interpolations where in (8) we only emphasize
the latter. This is because the intermediate interpolation
is relatively cheap, being an interpolation in configuration
space rather than in phase space. The lattice–kick model,
~T [	�(n)] = ~K[	�((n+1)�)]Æ ~Rwhere 	�

ij((n+1)�) :=

Sl[	�(n)](R�1~zij), would be more expensive because it
would require two interpolations in phase space and phase
space interpolation is the most expensive part of this calcu-
lation.

We want to stress that since 	(n) is known, the corre-
sponding spatial density %(n) on the m–dimensional spa-
tial sub–mesh is given by simply summing 	(n) over the
second, momentum multi–index. If the mesh has N =:
n2mg mesh points in total, then in the worst case the

p
N =

nmg different kicks on the spatial sub–mesh can be com-

puted by multiplying the
p
N vector %(n) with a

p
N�pN

matrix, the discretized kernel, giving a worst case opera-
tions count ofO(N) for computation of the collective kick.
Actually, even if (e.g. in the CR case) the collective kick
can be computed less expensively (O(

p
N logN)), the ap-

plication of the kick to the N mesh points is, although usu-
ally unproblematic, always O(N). In other words a N par-
ticle tracking routine with an operations count of less than
O(N) is impossible.

We have developed a Vlasov Fokker–Planck code[1] in
2–D phase space for leptons (not restricted to beam–beam
interaction) and two hadron codes (without the Fokker–
Planck step) in 2–D and 4–D phase space (BBPF1D and
BBPF2D). The order of the interpolation scheme can be cho-
sen, but at least in 2–D phase space quadratic or cubic inter-
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polation seems sufficient. In Section 2.5 we will compare
PF and WMPT simulations in one degree of freedom and
see that with properly chosen mesh parameters the methods
are in good agreement, at least in principal aspects.

In 4–D phase space unfortunately the numbern g of mesh
points in each dimension required to preserve probability
to a decent level has to be so large that the 4–D PF al-
gorithm in its serial (single CPU) version is possibly too
slow. In particular since the local 4–D interpolation be-
tween neighbors along the 4–D mesh axis is not local in
the linear memory of the computer, it requires accessing
array elements with potentially large stride and thus poten-
tially produces a large amount of cache misses (potentially
many more than one per updated mesh point). Note that al-
ready in a serial code, domain decomposition of the mesh
into blocks smaller but comparable with the cache size of
the computer would give some (unfortunately hardware de-
pendent, non–portable) relief.

2.3 Weighted Macro Particle Tracking

WMPT [4] is a method for computing time dependent
phase space averages of f

hfin :=

Z
R2m

f(~z) n(~z) d
2mz (9)

hfi�n :=

Z
R2m

f(~z) �n(~z) d
2mz (10)

via

hfin =

Z
R2m

f(~z)  0

�
~M�1

n (~z)
�
d2mz

=

Z
R2m

f
�
~Mn(~z)

�
 0(~z) d

2mz (11)

where ~Mn := ~T [ �n�1] Æ : : : Æ ~T [ �
0
] is the symplectic n–

turn map containing successive collective kicks. Note that
the beam-beam kick function can be written as such an av-
erage over the beam–beam kernel with q fixed

K[ �n](q) = � hg(q; �)i�n : (12)

Now starting with the initial densities  0 and  �
0

defined
on an initial mesh f~zijg, a quadrature formula with weights
wij , and trajectories ~Mn(~zij), we can approximate hfin �P

ij f(
~Mn(~zij)) 0(~zij)wij . Of course if we approximate

the kicks in Eq. (12) by this method we will only have ap-
proximate trajectories ~�ij(n) � ~Mn(~zij). Thus our final
approximation is

hfin �
X
ij

f(~�ij(n)) 0(~zij)wij : (13)

Note that this procedure uses only forward tracking of par-
ticles with an additional pre–assigned and a constant “total
weight” Wij :=  0(~zij)wij . Conservation of probabil-
ity is guaranteed by construction. Also note that the initial
mesh structure is lost after the first turn. Thus, in contrast

to methods with an explicit mesh (like PF), naive compu-
tation of the collective kick is an O(N 2) operation. In the
CR case, ordering the trajectories ~�ij(n) and ~��ij(n) with
respect to the spatial coordinate at the cost of O(N logN)
makes the remaining part of the computation of the collec-
tive kick O(N) (see [4]). In the two degree of freedom
case the hybrid fast multipole method (HFMM) [7] allows
efficient computation of the kicks (O(N) with a reason-
able order constant !) as long as the distributions of the
trajectories in configuration space are sufficiently regular.

2.4 An Implementation of HFMM for WMPT

HFMM [7] is a hybrid of the fast multipole method
(FMM) developed by Greengard and a PIC based reduc-
tion of the number of independent particles developed by
Jones for space charge and applied the first time to beam–
beam simulations by Herr, Zorzano and Jones. FMM is a
tree code that allows the computation of the collective force
of an ensemble of N charges on themselves to a given ac-
curacy Æ with an operations countO(N) given that the dis-
tribution of the ensemble in configuration space is not too
irregular. It employs the fact that the force on a test charge
due to a distant localized “clump” of charge is given by a
finite order multipole expansion up to precision Æ.

The FMM algorithm successively subdivides an outer
rectangle in configuration space occupied by the ensem-
ble until, on the finest level of subdivision, no more than a
fixed number (typically 40) of particles are in each box.
This leads to a tree structure of boxes containing boxes
containing boxes and so on, until the boxes on the finest
level finally contain a small number of particles. In the
non–adaptive version of the scheme all boxes on the same
level have the same number of child boxes (weighted tree).
We use the adaptive version, which means that a box only
branches into child boxes if the box itself still contains too
many particles. Then the algorithm computes the multipole
(long distance) expansions for all boxes on the finest level
explicitly. The next step is to generate multipole expan-
sions around the center of the parent boxes by translating
their children’s expansions to the center and adding them
up so that in the end every box, no matter which level of
mesh refinement it belongs to, has its own long distance ex-
pansion. Then the far fields inside each box due to all suf-
ficiently well separated boxes are converted to Taylor (lo-
cal) expansions on each level going down from the coarsest
possible level to the finest level. Finally, for each box on
the finest level, the forces due to charges in a close vicin-
ity have to be computed directly. The 2–D adaptive rou-
tines (DAPIF2), used in our simulations, were supplied by
Greengard. For more details see Greengard in [7].

Unfortunately, FMM needs about 16–18 times N

REAL*8 words of workspace and in addition the order con-
stant of this O(N) algorithm is large enough to be pro-
hibitive for the purpose of multi–turn tracking of many mil-
lions of particles.

The original HFMM (Jones) divided the configuration
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space into core- and halo domains, superimposed a PIC
mesh on the core domain, deposited the core charges on the
PIC mesh and passed the joint set of the mesh points and
halo particles to FMM. The idea is that if the core is popu-
lated densely enough, then the approximation of a PIC type
charge collection strongly decreases the required computa-
tional resources while not strongly affecting the accuracy
of the force computation. On the other hand, the halo par-
ticles would not be very well represented on a PIC mesh
and in addition would need an unreasonably large mesh to
cover the halo.

Our implementation of HFMM in BBDeMo2D first deter-
mines an outer rectangle in configuration space around the
joint starred and unstarred particles. We then divide the
rectangle into two parts, a “core” region where the density
of particles is high and a “halo” region where the density of
particles is small. To do this we divide this rectangle into
ng � ng cells. The idea is (as pointed out above) to repre-
sent the core by depositing the weights of the particles on
the corners of the cells and to represent the halo particles by
themselves. In order to find the core and halo regions dy-
namically (adaptively) we proceed as follows. The popula-
tion of each cell is determined. Cells with less than a speci-
fied minimum number of particles are put into the halo and
the remaining cells are put into the core. This determines
the number of corners of the core cells, Nc, and the number
of halo particles,Np, and thenNc+Np is the number of en-
tries in the charge and coordinate lists for the FMM routine.
If Nc+Np is deemed too large, we decrease the minimum
number of particles required for a cell to be part of the core
and evaluate the cells anew. In general this increases Nc

but decreases Np significantly. Once we are satisfied with
the size of Nc +Np, the total weightsW�

ij of the trajecto-
ries of the starred beam are either assigned to the corners
of the finally chosen core cells by some PIC scheme (cur-
rently “cloud in cell”) or, if the trajectories are inside halo
cells their weights are kept as single entries in the charge
list. In this step, the weightsWij of the unstarred beam are
not used but the unstarred trajectories inside halo cells are
passed to the coordinate list. Then the FMM routine com-
putes the forces due to the starred charges at all theNc+Np

coordinates. The kicks are either directly applied to the un-
starred trajectories in the halo cells or distributed among
the unstarred trajectories in the core cells by an interpola-
tion scheme related to the original PIC deposition scheme.
Finally, the process is repeated with the role of the starred
and the unstarred trajectories interchanged. Note that only
the charge list has to be reassigned. The coordinate lists
stay the same for both calls to DAPIF2.

This method performs the most time consuming step, the
FMM, in O(Nc + Np) operations and only needs 16–18
times (Nc+Np) REAL*8words of workspace. Thus ifNc+
Np � N , a significant decrease in computation time and
workspace is achieved. For example, in a typical BBDeMo2D
run with 454 � 4 � 106 macro-particles per beam, we use
a PIC mesh of size 150 � 150 = 22; 500. If we allow
Nc + Np � 5 � 22; 500, the reduction of entries in the

FMM lists is about 70. For a more extreme example with
614 � 14 � 106 particles per beam the reduction is actually
close to 250.

2.5 Comparison of PF and WMPT

Both the PF and WMPT methods, in their current imple-
mentation in BBPFmD and BBDeMomD, use a uniform (in
the case of WMPT initial) mesh, but, in principle, both
methods allow more general non–uniform meshes. The
uniform (initial) mesh which covers a finite rectangular do-
main in phase space, typically �5 initial beam widths (�0)
for WMPT or �6–7�0 for PF, treats its inner (core) and
outer (“halo”) regions equally. Thus in contrast to con-
ventional macro-particle methods, where the initial beam
distribution is typically represented by a Monte Carlo gen-
erated ensemble of particles of equal weight and concen-
trated around the core, the two methods used here are ex-
pected to simulate the evolution of the higher order beam
moments more accurately. A round–Gaussian ensemble in
2–D phase space with 40,000 particles has about 39,600
(99%) of its particles contained in the �3�0 square. A
WMPT or PF ensemble with 200�200 particles or mesh
points on a uniform square mesh of size �5�0 has only
120� 120 = 14; 400 (36%) of the particles/mesh points in
the �3�0 square and 25,600 particles outside. In the cur-
rent implementation, the BBPFmD codes use local interpo-
lation in the tensor–product space spanned by the quadratic
or cubic polynomials over the mesh axes. All 4 codes use
the simplest possible quadrature formula, namely the Gaus-
sian midpoint formula with wij =

Q
2m

i=1�zi independent
of i and j.

In several one degree of freedom examples, we have
checked agreement between the BBPF1D and BBDeMo1D

codes. Here we study the the turn by turn evolution of the
centroids �q�;�n := hqin � hqi�n, as well as the evolution of

the beam emittance �n :=

q
C
2;0
n C

0;2
n � (C1;1

n )2, where

Ci;j
n := h(q � hqin)i(p� hpin)jin.
Let us summarize the approximations of the time depen-

dent phase space averages used in the two cases

hfin �
� P

ij f(~zij) 	ij(n) wij : PFP
ij f(~�ij(n))  0(~zij) wij : WMPT

:

(14)
Figure 2 shows excellent agreement between the � mode

frequencies and the spectra of the � modes obtained for
� = 0:003 and almost identical linear tunes Q0 =

p
5� 2

in the CR limit, giving some confidence in the methods.
The difference between the two � mode spectra needs
further study, but we will comment briefly on this later.
Both beams were initially round Gaussians in phase space
with the unstarred beam having an initial coherent beta-
tron amplitude of 0.1�0. The initial density was repre-
sented by a 201�201 square grid over �5�0 in both di-
rections for WMPT and the grid for the PF simulation
used 241�241 points over �6�0. Note that the initial
mesh used for WMPT only needs to cover the domain in
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Figure 2: (color) Comparison between PF and WMPT :
coherent dipole modes.

phase space where the initial density contributes signifi-
cantly to the phase space averages. If we want to follow
up to 4-th order centered moments of an initially round
Gaussian ensemble, then �5�0 around h~zi0 is a reason-
able choice, as that is the domain where the functions
(zk � hzki0)

4e�(zk�hzki0)
2=(2�2

0
), k = 1; 2m are not neg-

ligibly small. Thus for example the computed initial kurto-
sis C4;0

0 with the chosen cut off is close enough (typically
10�4) to its exact value 3�2

0 . PF on the other hand requires
a mesh that is large enough to take care of centroid oscilla-
tions and emittance blow up during the simulation. The
FFT was performed over data from 217 turns. The two
� mode spectra (peak on the right) are indistinguishable
and the two � mode spectra have nearly the same tune.
The Yokoya factor (Q��Q�)=� for the Chao–Ruth model
comes out higher (� 1:51), than in the round beam case
[4]. In [8] we have introduced an averaged Vlasov equa-
tion and linearization around a Gaussian equilibrium of the
averaged system yields exactly this value for the Yokoya
factor. We don’t understand as yet why the agreement is
so good. The incoherent continuum due to the single par-
ticle motion is more pronounced in the WMPT spectrum,
because it keeps track of N actual trajectories, whereas PF
smoothes out the density in each interpolation step. This
needs further study. Figure 3 shows the initial emittance
growth due to filamentation in an example with a tune split
�Q0 = 2� = 0:006. The unstarred beam had an initial co-
herent betatron amplitude of 1�0. All other beam and sim-
ulation parameters were the same as in Fig. 2. Both simu-
lations agree up to the 1% level, but the general impression
is that the time evolutions obtained with WMPT are a lit-
tle more noisy (“wiggly”) then those obtained with PF. We
conclude here that with properly chosen mesh sizes both
methods agree very well qualitatively and also, to a large
extent, quantitatively. Nevertheless, in situations where
there are neither large amplitude coherent oscillations nor
large emittance growths present the PF method in one de-
gree of freedom is slightly more efficient and stable than
WMPT.

Simulations in 4–D phase space (2 d.o.f.) are much more
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Figure 3: (color) Comparison between PF and WMPT :
emittances.

computationally expensive. In conventional macro-particle
simulations the phase space ensemble is generated by the
Monte Carlo method. There one is tempted to use a rel-
atively small number of macro-particles to gain computa-
tional speed, because the actual accuracy of the represen-
tation of the density in phase space is somewhat hidden at
first sight. But looking at the sampling from the point of
a uniform (initial) mesh, suggests that following the evolu-
tion of a phase space density over a large number of turns
in the presence of a collective force requires a large num-
ber of macro-particles or mesh points. Let us assume we
want a decent representation of the density on a rectan-
gular domain with �5�0 in 4–D phase space. Then even
with moderate beam–beam parameters around 3 �10�3, our
studies using WMPT with N = 114 to N = 614 have
shown that one should have at least 30–40 particles per
phase space dimension and per bunch in order avoid in-
stabilities over 16,000 turns. It is clear that with this large
number of macro–particles / mesh points any method for
the computation of the collective kicks which has an op-
erations count of more than O(N) is prohibitive, but even
with an operations count of O(N) the restrictions imposed
by computation time and memory requirements are hard to
meet. In the case of BBDeMo2D, we employ HFMM as ex-
plained in Section 2.4, and a typical (serial) run with 454

macro–particles over 214 turns on a SUN ULTRA–80 dual
UltraSparc–II workstation with 450 MHz clock, 3GB RAM
and 4MB cache takes about 145h (6 days) CPU time.

In the PF case, the interpolation and not the calculation
of the collective force determines the performance. With a
local cubic 4–D interpolation, the updating of each mesh
point touches 256 neighboring mesh points in phase space.
As pointed out in Section 2.2, the 4–D structure of the mesh
leads to a large amount of cache misses and thus increases
the execution time even more. In addition, even with cubic
4–D interpolation and with N = 514 � 6:8 � 106 mesh
points the conservation of probability is relatively poor.
As an example, a BBPF2D run with N = 514 and using
cubic 4–D interpolation took over 300h (12 days) for 5000
turns on our ULTRA–80. During this run the density in
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the outer mesh region degraded so badly that the computed
kurtosis actually became negative. Note that the code
had been completely inlined and pre–optimized by hand
which increased the performance (with the SUN compiler)
by a factor of 2. We are working on improved interpola-
tion schemes and other enhancements to speed up the code.

Last but not least, the memory needed to store the main
array (the mesh table (PF) or the particle table (WMPT))
for two bunches in m degrees of freedom and in REAL*8 is

Memory=bytes =

�
16 � n2mg � 2 : PF
16 � n2mg � (2m+ 1) : WMPT

:

(15)
Here ng is the number of mesh points/particles per dimen-
sion, the factor of 16 is 2 bunches times 8 bytes, the fac-
tor of 2 for PF is due to the fact that we have to store 2
instantiations of the mesh for the purpose of interpolation
(“old/new”) and the factor of 2m + 1 for WMPT comes
from 2m phase space coordinates plus the total weightW ij

of the trajectory.
We will discuss some of our first results with WMPT in

4–D phase space in Section 3.2.

3 SIMULATIONS

3.1 Some Results in One d.o.f.

We have studied extensively the dependence of the co-
herent dipole modes (�/� modes) on the split of the bare
machine tunes (�Q0) and on the ratio of the beam–beam
parameters in one degree of freedom. These studies were
reported in [4]. In [8] we report on the the existence of
quasi-equilibria for the Chao–Ruth limit. Here we only re-
port some new results based on the implementation of RF–
dipoles and higher order multipoles in the lattice and their
interaction with the beam–beam kick.
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Figure 4: (color) Maximum amplitudes with RF–dipole ex-
citation.

Figure 4 shows the response of the coherent modes to an
external excitation with an RF–dipole located at the center
of the arc. The simulations were performed with BBPF1D

and with a mesh of 241�241 points over�6�0. The beam–
beam parameter is 0.003 and the tune split is 5 � 10�6 with
Q0 � Q�

0 � 0:236 (as in Fig. 2) and the normalized kick
strength of the RF–dipole was 1 �10�3. Both beams had no
initial coherent betatron amplitude and the simulation was
performed over 217 turns. When the RF-dipole operates at
a constant modulation tune Qm := fdip:=f0 both modes
are excited and their amplitudes are modulated with a tune
comparable to jQm�Q�;�j. Figure 4 shows the maximum
amplitude of the � mode (red) and the � mode (green) in
the CR limit as a function Qm. The maximum amplitude
is given in units of �0. For both modes we find a resonance
excitation peak at the frequency predicted in Fig. 2.
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Figure 5: (color) Beam–beam with sextupole: emittance
growth.

Figures 5 to 7 show the emittance growth and the in-
stability of the centroid motion induced by the interaction
of a strong sextupole kick in the center of the arc and a
strong beam–beam interaction in the CR limit close to the
third–integer resonance. Both beams were initially round
in phase space and one had a 0:1�0 offset. The sextupole
alone (blue curve) (or with � up to 0.006) leads to hardly
any emittance growth. However, when the incoherent tune
spread reaches 1=3 (� = 0:009, green) the emittance is
significantly increased. Moreover, in the latter case the
� mode amplitude is enhanced from about 0:1�0 to about
1:5�0 whereas the � mode amplitude stays small (Fig. 6).
Finally when the 1=3 resonance is well inside the inco-
herent tune spread (� = 0:012, red), the emittance grows
strongly and the amplitudes of both modes are significantly
enhanced (Fig. 7). These observations seem to be consis-
tent with the 4–D PIC simulations presented by Shi and Jin
[9] at this workshop.

3.2 First Results in Two d.o.f.

We have simulated the coherent dipole modes in 4–D
phase space with BBDeMo2D using the HFMM representa-
tion of the collective kick and a linear lattice very close to
the difference resonance (Qx = Qy =: Q0, Q�

x = Q�

y =:

Q�

0) with Q0 =
p
5�2 and �Q0 = 5 �10�6 (Fig. 8, 9) and

�Q0 = 6 � 10�3 (Fig. 10, 11). The beam–beam tune shift
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Figure 7: (color) Same as Fig. 6 but with � = 0:012.

in both cases, given by the extent of the incoherent contin-
uum, is �x = �y = 0:0036. Figure 8 shows the spectra of
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Figure 8: (color) The � and � mode spectra without tune
split.

the �x and the �x mode, hxin�hxi�
n

obtained from an FFT
over 214 turns. Both beams were initially round Gaussians
in their four dimensional phase space and in each plane one
of them had an initial coherent betatron amplitude of 0:1� 0

whereas the other was at rest. Both modes can clearly be

resolved. The separation of the �x mode tune from the �x
mode tune is (1:28 � 0:02)�x with �x being the extent of
the incoherent continuum. The spectra of the dipole modes
for the vertical motion (not shown) are the same. Figure
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Figure 9: (color) The � and � modes in time domain with-
out tune split.

9 shows the turn by turn evolution of the dipole modes for
the above parameters. The � mode (red) has a completely
stationary amplitude. The � mode (green) amplitude drops
slightly to about 80% of its initial value but then stays al-
most constant. The weak but visible low–frequency modu-
lation of the � mode amplitude seems to be an artifact of the
discretization. It is reduced when the number of particles
is increased (not shown). The emittances (also not shown)
stay constant to the 1% level. This, in combination with
our earlier results in one degree of freedom [4, 8], indicates
that, for a linear lattice, moderate beam–beam parameters
and in the absence of external excitation, the dipole modes
are neutrally stable.
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Figure 10: (color) Filamentation of the � and � modes with
large tune split.

Figure 10 and 11 show an example with �Q0 = 0:006,
i.e. almost twice the beam–beam tune shift parameter so
that the coherent dipole modes should be Landau damped.
The initial coherent betatron amplitudes of the beams are
1�0, 0 for the horizontal and vertical planes respectively of
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the unstarred beam and 0, 1�0 for starred beam. Figure 10
shows the decay of the modes in the horizontal plane. Fig-
ure 11 shows the blow up of the emittances because of the
filamentation of the dipole modes. The mean (�x+�y)=2 is
printed for the unstarred and the starred beam. Both beams
stay round up to the 10% level. The unequal emittance
blow up of the two beams can most likely be explained
by their different tunes (Q0 � 0:236, Q�

0
� 0:230) and

thus different sensitivity to the nonlinear perturbation of the
beam–beam force.

4 SUMMARY AND OUTLOOK

We have developed two methods, PF and WMPT, for
the simulation of nonlinear collective effects in beams de-
scribed by Vlasov–Poisson systems. Both methods are
based on the symplecticity of the one turn map, but PF
easily allows extension to Vlasov Fokker–Planck systems
by means of operator splitting. We have written codes for
simulating the beam–beam interaction in the strong–strong
model. WMPT and PF show good agreement in the one de-
gree of freedom limits of the beam–beam and we have ex-
tended both methods to the more important two degree of
freedom case. At present WMPT is more efficient in higher
dimensions. We will try to improve on the efficiency of PF
in 4–D phase space and we have already started develop-
ing a parallel (distributed memory) version of the WMPT
code. Moreover, we will include a MAD–reader, higher order
maps for real beam line elements, and interpolated higher
order generating functions (see [3]) for composed IP–to–
IP maps. We will pursue the idea of speeding up of both
methods (PF and WMPT) by incorporating our results on
averaging [8].

In one degree of freedom, we have studied the dipole
modes and Landau damping [4]. In addition, we have
studied the response to external excitations (RF–dipole)
and have observed large emittance growth together with a
strong increase of the amplitudes of the centroid motion in
the presence of lattice nonlinearities (e.g. sextupole) com-
bined with a sufficiently large beam–beam parameter.

We have just begun analyzing the dynamics of the beam–
beam in 4–D phase space and have begun determining op-
timal parameter settings for the codes, e.g. ng , N , etc. as
functions of �, ��, the distance of the bare tunes to orbital
resonances, the total turn number, etc. First tests clearly re-
solve the dipole modes and their neutral stability in a linear
lattice and with moderate tune shift parameters. They also
indicate the possibility of introducing Landau damping via
a tune split.
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EFFECT OF ELECTRON-BEAM COMPENSATION OF BEAM-BEAM
TUNE SPREAD ON BEAM-SIZE GROWTH IN TEVATRON

L. Jin and J. Shi
Department of Physics, the University of Kansas, Lawrence, KS 66045, USA

Abstract

Electron-beam compensation of beam-beam tune spread
in Tevatron was studied with a self-consistent beam-beam
simulation (particle-in-cell method with a million macro-
particles). It was found that the additional beam-beam in-
teractions between the electron and hadron beams could
excite the beam-beam instability on the anti-proton beam
while the tune-spread of the anti-proton beam is shrunk sig-
nificantly. This study indicates that the phase-dependent
terms in the Hamiltonian for the beam-beam interaction
could dominate the beam-beam effects and the reduction of
the beam-beam tune-spread by introducing additional non-
linear beam-beam interactions could deteriorate the stabil-
ity of the anti-proton beam.

1 INTRODUCTION

In a storage ring collider, the beam-beam interaction is
one of major factors limiting the beam current and lumi-
nosity. Recent studies showed that when the beam-beam
parameter exceeds a threshold the beam-beam interaction
could excite a chaotic coherent beam-beam instability that
results in an enhanced growth of beam sizes and signifi-
cant reduction of luminosity [1, 2]. For the Large Hadron
Collider (LHC) being constructed at CERN and Tevatron
upgrading (RUN IIB) at Fermi Lab, efforts are being made
to reduce beam-beam effects in order to achieve the de-
signed luminosity [3, 4]. The compensation of the beam-
beam tune spread with electron beams is one of schemes
proposed for the Tevatron RUN IIB [3]. In this scheme,
high intensity low-energy electron ( � ) beams will collider
with anti-proton (

�� ) beam at certain locations in the ring
other than the nominal interaction points for proton (� ) and�� beams to compensate the tune spread of the

�� beam due to
beam-beam interactions between � and

�� beams. To have a
better understanding of such electron-beam compensation,
let us take a quick look at the Hamiltonian for the transverse
motion of the

�� beam. Neglecting nonlinearities (magnetic
field errors) in the lattice, the Hamiltonian can be approxi-
mately written as

� � �� � �	 
 �  � � �	 � �� � � � 
 � � � � �	 � �� � � �
� �� � �	 
 � �  � ! 
 � � � � ! 
 # �  � & 
 # � � � &

(1)

where
�� is the betatron tune and

� �	 � �� �
the action-angle

variables for the transverse motion of the
�� beam.

�  �
and

� � �
are the perturbative Hamiltonian for the beam-

beam interactions between � and
�� beams and between

��

and � beams for the electron-beam compensation, respec-
tively.

� �  � !
(

� � � � !
) is the average of

�  �
(

� � �
) that

leads to the lowest-order tune spread due to the beam-
beam interactions between

�� and � ( � ) beams. Because
of the opposite charge of � and � ,

� �  � !
and

� � � � !
have

an opposite sign and cancel each other if the � beam has
the same intensity and charge distribution as that of the �
beam.

# �  � & � �  � - � �  � !
and

# � � � & � � � � - � � � � !
are the nonlinear phase-dependent (oscillating) parts of the
perturbative Hamiltonians that could lead to resonances
and beam instabilities. The electron-beam compensation
of beam-beam tune spread is based on the assumption that� �  � !

is the dominant term of
�  �

and a smaller beam-
beam tune spread would always improve beam perfor-
mance because of less resonance crossings. The minimiza-
tion of the tune spread of the

�� beam with the electron-
beam compensation, however, unavoidably introduces an
additional nonlinear phase-dependent perturbation

# � � � &
to the

�� beam. The question here is how important the non-
linear phase-dependent terms

# �  � &
and

# � � � &
are when

the beam tune spread is reduced as desired by using the
electron-beam compensation. To answer this question, a
self-consistent beam simulation study was conducted with
the lattice model of Tevatron. In this paper, the results of
this study are reported. This paper is organized as follows.
In Section 2, the simulation models are discussed briefly.
The simulation results are presented in Section 3. Section
4 contains a summary.

2 SIMULATION AND LATTICE MODELS

The test lattice used in this study is Tevatron lattice
V3h15av2 [5]. In this study only linear lattice were used
since multipole field errors in the lattice normally do not
change the characteristic of the beam-beam instability [1].
In the simulation, � and

�� beams are collided only at one
interaction point D0 ( 3 4 � 6 8 9 : ;

) and the electron beam
for the compensation is located at F0 where 3 -function is
about 70m in both horizontal and vertical planes. As the
intensity of the � beam is much larger than that of the

��
beam, the

�� beam is perturbed more severely than the �
beam due to the collision between the � and

�� beams. The
electron beam compensation of the beam-beam tune spread
was thus only used on the

�� beam as proposed for the Teva-
tron RUN IIB [3].

Our self-consistent (strong-strong) beam-beam simula-
tion code has been fully tested and presented in detail in
our previous paper [1]. In this code, each beam is rep-
resented by a large number of macro-particles with given
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initial distributions in transverse phase space. In this study,
the initial phase-space distributions of two counter-rotating
beams are chosen to be round Gaussian beams in the nor-
malized transverse phase space with standard deviation � �
and truncated at

� � � � , where � � � � � 
 3 4 . � and 3 4
are the nominal transverse beam size and the value of the
3 at IP, respectively. Different initial emittance for the

��
and � beams in the Tevatron was also taken into account
in the simulation and the emittance ratio between the

��
and � is 3/4. During the tracking, beam-beam kicks in
four-dimensional transverse phase space are calculated at
each IP by using the particle-in-cell method. The task con-
sists of three major steps [1]: (a) The beam charge dis-
tributions at each crossing of IP are obtained by assign-
ing macro-particles to the grid points of an uniform mesh
in two-dimensional transverse configuration space for each
beam using the four-point cloud-in-cell technique. (b) The
beam-beam kicks are calculated at the grid points using
the pre-calculated Green’s functions for the beam-beam
kicks. (c) the kicks are then interpolated to the position
of every macro-particle. In order to ensure the conver-
gence of the simulation parameters and to avoid any ar-
tificial result due to those numerical approximations, the
size of mesh, the grid constant (the length between near-
est neighboring grid points), and the number of macro-
particles have to be carefully tested [1]. In this study, we
found that a uniform mesh extending to � � � in all direc-
tions of the normalized configuration space with a grid con-
stant of

6 8  � � is good enough. To have a reliable beam-
beam simulation for hadron beams, on the other hand, the
number of macro-particles has to be large enough, typically� � 6 �

. In this study, we use
: � � 6 �

macro-particles for
each beam. Tracking of particle motion has been done
in four-dimensional transverse phase space without syn-
chrotron oscillations and momentum deviations. The beam
dynamics has been studied with � 6 �

-turn tracking that cor-
responds to about 21 seconds run in Tevatron.

For the simulation of the electron-beam compensation,
we considered the case that the electron beam has the same
kind of charge distribution of the initial � beam. The dis-
tribution of the electron beam is therefore chosen to be
the Gaussian distribution with a standard deviation that
changes with the rms beam size of the counter-rotating �
beam during the tracking. The momentum kick exerted by
the electron beam can be simply calculated with the stan-
dard formula for the beam-beam interaction of a Gaussian
beam [6].

3 SIMULATION RESULTS

Both full- and half-strength electron-beam compensa-
tions were studied. In the full-strength compensation,� � � � - � � 

where
� � �

and
� � 

are the beam-beam pa-
rameters of the

�� beam for the � -
�� collision and � -

�� col-
lision, respectively. In the half-strength compensation,� � � � - � �  � 

. Two different working points were used
in the study, � � �  6 8 : � 

and � � �  6 8 :  �
that is the

nominal working point and � � �  6 8  � 6
and � � �  6 8  9 6

that is close to the 4th-order resonance. In addition, the ef-
fect of the Landau damping on the coherent instability in a
slightly unsymmetrical ring was also studied.

3.1 Results with % & ' ) + - / 1 ) and % 3 ' ) + - / 5 6
The study of the electron-beam compensation with the

nominal working point is to understand how the electron
beam would affect the beam dynamics of the

�� beam in a
working point that is far away from major resonances. In
this case, both � and

�� beams have the same betatron tune
of � � �  6 8 : � 

and � � �  6 8 :  �
. In the simulation, the

intensity of the
�� beam is assumed to be half of that of the� beam.

� �  � 6 8 6 � and
�  � � 6 8 6 6 :

, where
�  �

is the
beam-beam parameter of the � beam for the � -

�� collision.
Fig. 1 plots the initial tune spread of the

�� beam with or
without the electron-beam compensation, where the beam
turn spread was evaluated with about

: 6 6
test particles

during the first 2000-turns tracking. It shows that with
the electron-beam compensation the beam tune spread was
shrunk as expected. In the case of the half compensation
(

� � � � 6 8 6 6 :
), the tune spread of the

�� beam is shrunk
about a half of the original (see Figs. 1a and 1b). In the
case of full compensation (

� � � � 6 8 6 � ), a small remain-
ing tune spread of 9 � : 6 8 6 6 

(see Fig. 1c) is the high-
order contributions from both � -

�� and � -
�� collisions that

becomes observable when the lowest-order tune spread is
eliminated by the electron-beam compensation. In Fig. 2,
the evolution of rms beam size of the

�� beam was plotted
for the cases of Fig. 1. Without the electron beam compen-
sation, the size of the

�� beam increases less than 1.5% in� 6 �
turns (see curve a of Fig. 2). With either half- or full-

strength of the electron beam compensation, however, the
beam-size growth becomes much more severe, with more
than 6% and 8% in � 6 �

turns for the half and full com-
pensation (see curve b and c of Fig. 2), respectively, even
though the tune spread is reduced significantly. Since in
this case the original tune spread of the

�� beam does not
lead to crossing of any major resonance, the reduction of
the tune spread with the electron-beam compensation could
not improve the beam dynamics but introduce more nonlin-
earity (

# � � � &
in Eq. 1) to the beam that is responsible for

the increased beam-size growth. For a good working point
that is away from major resonances, therefore, the beam-
beam tune spread is not necessarily important to the slow
beam-size growth and the nonlinear phase-dependent parts
of the beam-beam Hamiltonian dominate the beam-beam
effect instead.

3.2 Unsymmetrical rings

Simulation was also performed for the � and
�� beams

with slightly different working points. The working point
for the

�� beam was chosen to be the nominal working point
( � � �  6 8 : � 

, � � �  6 8 :  �
) while for the � beam two

different cases were studied, ( � � �  6 8 : � 9
, � � �  6 8 :  :

)
and ( � � �  6 8 : �  

, � � �  6 8 :  A
). The tune split of the
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a) b) c)

Figure 1: Tune spread of the
�� beam when � � �  6 8 : � 

and � � �  6 8 :  �
.

� �  � 6 8 6 � and
�  � � 6 8 6 6 :

. a) Without
the electron-beam compensation; b) with the half-strength electron-beam compensation; and c) with the full-strength
electron-beam compensation. Even-order resonances up to the 10th order are plotted as solid lines, and + indicates the
location of the bare tune.

Figure 2: Evolution of rms beam size of the
�� beam for

the cases of Fig. 1. a) without the electron-beam compen-
sation; b) with the half-strength electron-beam compensa-
tion; and c) with the full-strength electron-beam compen-
sation. � � is the initial beam size.

two beams in these two cases is thus
� � � 6 8 6 6 � and� � � 6 8 6 6 :

, respectively. In the case of
� � � 6 8 6 6 � , the

result is roughly the same as that in the symmetrical rings
(Section 3.1) and the � beam did more damage than benefit
to the

�� beam with both the full- and half-strength com-
pensation. Fig. 3 plots the beam-size growth in the case
of

� � � 6 8 6 6 :
. Without the electron beam, the size of the

�� beam increases about 3% in � 6 �
turns. Note that the

��

beam grows only about 1.5% in � 6 �
turns in the symmetri-

cal rings. In the case with the full-strength compensation,
the collision between the � and

�� beams again worsened the
performance of the

�� beam (curve c in Fig. 3) but the half-
strength compensation slightly improved the beam dynam-
ics, the growth of the

�� beam size reduced to 2.5% during� 6 �
turns (see curve b in Fig. 3).

Figure 3: Evolution of rms beam size of the
�� beam

when the tune of the � and
�� beams is ( � � �  6 8 : � 

,
� � �  6 8 :  �

) and ( � � �  6 8 : �  
, � � �  6 8 :  A

), respec-
tively.

� �  � 6 8 6 � and
�  � � 6 8 6 6 :

. a) Without the elec-
tron beam compensation; b) with the half-strength electron-
beam compensation; and c) with the full-strength electron-
beam compensation.

3.3 Results with % & ' ) + - 5 6 + and % 3 ' ) + - 5 � +

If the original tune spread of the
�� beam leads to cross-

ings of major resonances due to either a bad working point
or a large beam-beam parameter between � and

�� beams,
the reduction of the tune spread with the electron-beam
compensation could move the beam away from the reso-
nances and improve the beam dynamics. To explore this
possible benefit of the electron-beam compensation, we in-
tentionally moved the working point of both the � and

��

beams to � � �  6 8  � 6
and � � �  6 8  9 6

which is close
to the 4th-order resonances and used a larger beam-beam
parameter between � and

�� beams, i.e.
�  � � 6 8 6 � and� �  � 6 8 6 

for the � and
�� beams, respectively.
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a) b) c)

Figure 4: Tune spread of the
�� beam when � � �  6 8  �

and � � �  6 8  9
.

� �  � 6 8 6 
and

�  � � 6 8 6 � . a) Without the
electron-beam compensation, the beam core crosses the 4th-order resonances; b) with the half-strength electron-beam
compensation; and c) with the full-strength electron-beam compensation. Even-order resonances up to the 10th order are
plotted as solid lines and + indicates the location of the bare tune.

Figure 5: Evolution of rms beam size of the
�� beam for

the cases of Fig. 4. a) Without the electron-beam compen-
sation; b) with the half-strength electron-beam compensa-
tion; and c) with the full-strength electron-beam compen-
sation. � � is the initial beam size.

In Figs. 4 and 5, the initial tune spread and the beam-
size growth of the

�� beam are plotted with or without the
electron-beam compensation. Without the electron-beam
compensation, the beam core crosses the 4th-order reso-
nances (see Fig. 4a) and results in a beam blowup in the
horizontal plane, an 80% increase in beam size during � 6 �

-
turns tracking (see curve a in Fig. 5). Note that the most
of this beam-size growth (the initial jump of the horizon-
tal beam size) is due to the beam filamentation because
of the severe deformation of the phase-space area nearby
the resonances. With both half- (

� � � � - 6 8 6 � ) and full-
strength (

� � � � - 6 8 6 
) of the electron-beam compensa-

tion, the tune spread of the
�� beam was shrunk as expected

and the crossing of the 4th-order resonances was eliminated
completely as shown in Figs. 4b and 4c. Consequently, the
initial blowup of the

�� beam was suppressed in both cases

with the electron-beam compensation (see curve b and c
in Fig. 5). In the case of the full-strength compensation,
however, a coherent beam-beam instability [1] occurred af-
terward on the

�� beam as the vertical beam size jumped
suddenly during � 6 �

to
 � � 6 �

turns (see curve c in Fig.
5) and, meanwhile, the beam-beam interactions between �

and
�� beams and between � and

�� beams induced a spon-
taneously unstable coherent oscillation on the

�� beam as
shown in Fig. 6c. On the contrary, in the case without

Figure 6: Beam-centroid motion in vertical plane of the
�� beam for the cases of Fig. 4. a) Without the electron-
beam compensation; b) with the half-strength electron-
beam compensation; and c) with the full-strength electron-
beam compensation. � � is the initial beam size. Both � and

�� beams are centered initially.

the electron-beam compensation, no spontaneously coher-
ent beam oscillation was observed after the initial beam
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filamentation (see Fig. 6a). Due to the unstable coher-
ent beam oscillation in the case of the full-strength com-
pensation, the beam-size growth rate (the slop of curves in
Fig. 5) after the sudden jump in the beam size is substan-
tially larger than that without the compensation. With the
full-strength compensation, therefore, the nonlinear phase-
dependent perturbation (

# � � � &
) from the � beam domi-

nates the interaction between the � and
�� beams and did

significant damage to the
�� beam even though the

�� beam
benefited initially from the phase-independent perturbation
(

� � � � !
) of the � -

�� beam-beam interaction. In the case of
the half-strength compensation, on the other hand, the orig-
inal beam blowup due to the beam filamentation near the
4th-order resonances was largely suppressed but no beam-
beam instability was excited as shown by curve b in Fig.
5. This result indicates that when the beam is close to ma-
jor resonances, the electron-beam compensation could im-
prove the beam dynamics if the strength of the � beam is
carefully chosen in such a way that the damage effects of# � � � &

is insignificant or the benefit of the compensation
outweighs the damage effects of

# � � � &
.

4 SUMMARY

The effect of electron-beam compensation of beam-
beam tune spread on the dynamics of hadron beams de-
pends on the competition between the benefits from the re-
duction of the beam tune spread and the damaging effects
of the additional nonlinear phase-dependent perturbation
from the � beam. At the nominal work point of Tevatron
(RUN II) that is away from major resonances, the beam
tune spread is not necessarily important to beam-beam ef-
fects but the nonlinear phase-dependent perturbation of the
beam-beam interactions dominates the beam dynamics. In
this case, the electron-beam compensation for the

�� -beam
tune spread was found to damage the dynamics of the

��

beam with a significantly increased beam-size growth even
though the tune spread of the

�� beam was shrunk as ex-
pected. Moreover, when the � and

�� beams have slightly
different working points with a tune split of

6 8 6 6 � : 6 8 6 6 :
,

very little improvement on the
�� beam could be found after

the electron-beam compensation of the tune spread. When
the working point is close to major resonances such as the
4th-order resonances, on the other hand, the beam-beam in-
teraction between the � and

�� beams could lead to the cross-
ing of the resonances and result in a large beam-size growth
on the

�� beam. In this case, the electron-beam compensa-
tion of the tune spread can move the beam away from the
resonances and suppress the initial beam blowup due to the
beam filamentation near the resonances. However, the non-
linear phase-dependent perturbation from the � beam could
still induce the chaotic coherent beam-beam instability that
will lead to a beam blowup on the

�� beam if the � beam
is too strong. This study suggests that the electron-beam
compensation of the beam-beam tune spread could improve
the beam dynamics only in the cases that the original sys-
tem is dominated by a few low-order resonances so that the

benefits from the tune-spread compensation outweighs the
damaging effects of the nonlinear phase-dependent pertur-
bation from the � beam.
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Summary of Coherent Theory and Simulations Session

James A. Ellison and Mathias Vogt
University of New Mexico

1 INTRODUCTION

There were two types of talks which we attempt to sum-
marize. Section 2 discusses the analytical talks and Section
3 the simulation talks. We hope that at least our summary
will have the flavor of the session and serve as a reason-
able pointer to papers in the proceedings and elsewhere.
We take this opportunity to thank the participants of this
session for making it an interesting one. The major empha-
sis in this session was on codes and we have tried to give
an overview of basic computational strategies in Section 3
before highlighting the talks.

2 ANALYTICAL TALKS

The analytical talks focused on beam–beam equilibria
and on perturbation analyses.

Warnock reported on work [1] on the existence of equi-
libria in the lepton case. Numerical studies indicated the
existence of an equilibrium; existence was then proven us-
ing a fixed point theorem in an appropriate Banach space
for sufficiently small beam–beam parameter. The proof
seems to require nonzero damping and so there is no clear
generalization to the Hadron case. More information was
found by linearizing the beam–beam force, but keeping the
nonlinear evolution law. Here the equilibria are found ex-
plicitly and in the lepton case it is a unique Gaussian. In the
Hadron case there is a large class of equilibria, but even so
the existence with full beam–beam force is an open ques-
tion.

Ellison reported on an averaged Vlasov equation for
hadrons [2]. This approximate model has a large class of
equilibria, indicating quasi–equilibria for the full model.
This was verified in simulations.

Tzenov [3] reported on preliminary work on equilibria
in the Hadron case using renormalization group techniques.
He found an approximate symplectic beam–beam map with
invariant phase space densities.

Shi [4], Warnock [1] and Vogt [5] all reported seeing
instabilities with their numerical codes if the beam–beam
parameter becomes too large. Shi also presented a detailed
study of chaotic behavior of the centroid in this case.

Perturbation theories were discussed. Shi mentioned his
projection operator approach [6], Tzenov [3] his renormal-
ization approach and Ellison and Vogt their averaging ap-
proach [2].

More work needs to be done on the existence of equi-
libria and quasi-equilibria and their stability in the Hadron
case. However, all analytical and numerical results we are

aware of are consistent with stable equilibria up to a thresh-
old for the beam–beam parameter.

The following need attention.

� Prediction of the threshold for instability.

� A study of the nature of trans–threshold dynamics.

� The study of the linearized equations seems under
control. Next it would be nice to develop a weakly
nonlinear theory that would show nonlinear mode
coupling.

� The long range interaction needs to be incorporated.

� The crossing angle needs to be addressed.

3 BEAM–BEAM SIMULATION CODES

3.1 Overview of Collective Methods

It is in general impossible to simulate the evolution of
2 or more colliding bunches of typically 109 to 1012 par-
ticles each over many turns. Therefore it is mandatory to
find an approximate description of the bunches which can
be handled computationally. We discuss three general ap-
proaches.

The classical approach is to replace each bunch by a
significantly smaller but somehow “representative” ensem-
ble of so called macro–particles. Having some notion of
a typical coarse grained single particle phase space den-
sity, which are in principle measurable quantities, one can
then create a Monte Carlo (MC) ensemble of N iden-
tical macro–particles particles at phase space points ~zk,
1 � k � N . In this approach the charge of the real
bunch is equally distributed among the macro–particles.
The macro–particles are then tracked through the lattice,
taking into account the collective beam–beam effect at the
IPs. Therefore one obtains N trajectories ~�k(�). In the
following we will call this approach Monte Carlo Macro–
Particle Tracking (MCMPT). At certain view points in the
ring, moments and binned densities of the macro–particle
ensemble can be computed in a straight forward way. If f
is a function on phase space, then the expectation of f is
approximated by

hfi
���
�
=

NX

k=1

f(~�k(�)) : (1)

Another approach is to choose an initial grid f~z~|g (uni-
form or not) in phase space, and assign weights  ~|(0)w~| to
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the grid points. Here the  ~|(0) are the values of the initial
density at ~z~| and the w~| are quadrature weights adapted to
the mesh. Then the grid points are used as initial values
for trajectories ~�~|(�) whose dynamics is approximated in
a similar way as in MCMPT. Expectation values are com-
puted analogously to MCMPT.

hfi
���
�
=
X

~|2grid

f(~�~|(�)) ~|(0)w~| : (2)

We will call this approach Weighted Macro–Particle Track-
ing (WMPT). The basic differences between WMPT and
MCMPT are the way in which the initial conditions are
constructed and the representation of the expectation val-
ues. In fact MCMPT can be seen as an equal weight limit
of WMPT with the expectation values being computed with
MC quadrature.

The third approach uses the symplecticity of the trans-
port map and the resultant measure preserving property to
obtain explicit approximations of the density at the con-
secutive viewpoints. Assume the phase space density is
known on a grid f~z~|g (typically but not necessarily uni-
form) at azimuth � and the map from � to � 0 is known.
Then due to conservation of probability the values of the
density on the ~z~| at �0 can be computed by tracking the grid
points backwards from � 0 to �. Since the backward track-
ing will in general not map grid points to grid points, the
updated density has to be obtained by interpolation of the
old density between neighboring grid points of the back-
ward tracked grid point. We call this approach [1, 7] the
Perron–Frobenius (PF) method. Note that the PF method
propagates the discretized density and neither trajectories
nor explicitly moments. Thus approximations of the den-
sity on the grid can in principle be generated at any time
without additional coarsening as in MCMPT and WMPT.
Nevertheless, it is unrealistic to write the complete 2m di-
mensional grid to disk at every viewpoint every turn and so
the computation of moments and/or coarsened or projected
densities is essential for turn by turn information in PF too.
Phase space integrals are represented by

hfi
���
�
=
X

~|2grid

f(~z~|) ~|(�)w~| (3)

where  ~|(�) is the approximation of the density at point ~z~|
and azimuth � and thew~| are quadrature weights associated
with the grid.

All three approaches mentioned above require an algo-
rithm to compute an approximation of the collective beam-
beam kick map. The quickest but least accurate approxi-
mation employs a spatial “test” density for which the col-
lective force as a function of the parameters of the density
is known explicitly. The force is then calculated by match-
ing the parameters of test density to the moments of the
opposing bunch and then evaluating the known function of
the parameters. Typically the test density is taken to be a
Gaussian and then the method is called either the soft Gaus-
sian approximation or the Gaussian source approximation

(GSA). The GSA is of course not completely selfconsis-
tent.

If only the transverse phase space is treated, a fully self–
consistent calculation requires in principle the solution of
a Poisson problem with roughly N charges as source term
at the positions of N spectator charges and applying a kick
map to the N spectator particles.

The treatment in PF in the special case where one half of
the grid axes are in the coordinate space and the other half
of the grid axes are perpendicular to the coordinate space
is particularly straight forward. Assume such a grid with
N = n2mg , m = 1; 2 points. Then the discretized spatial

density on the
p
N = nmg points of the spatial sub–grid

is obtained by quadrature along the momentum axes of the
phase space grid. In the worst case the computation of thep
N kicks can be done in O(N) operations.
The macro–particle tracking methods lose the grid struc-

ture after the first application of a transport map (WMPT)
or do not have such a structure from the beginning
(MCMPT). Naive direct computation of the kicks would
be an O(N 2) process and thus in general prohibitive for
long term tracking. The classical way to proceed is to in-
troduce a temporary spatial mesh, deposit the weights or
charges respectively of the trajectories to the mesh points,
compute the kicks on the mesh as explained above and fi-
nally redistribute the kicks among the trajectories using a
scheme determined by the deposition scheme. These par-
ticle in cell (PIC) methods [8] are well established for the
simulation of space charge effects. Most PIC methods have
an operations count of O(N +Np logNp) whereNp is the
number of PIC cells.

For not too many macro–particles the Fast Multipole
Method (FMM) [9] allows the computation of the collec-
tive kicks at a cost of O(N) but with large order constant
and at the expense of a large amount of work space.

The Hybrid FMM (HFMM) method [10, 5], combines
PIC and FMM and reduces the operations count even fur-
ther in that the core regions of phase space are represented
by a PIC mesh and only the accumulated charges of the
PIC cells and the halo particles are finally submitted to the
FMM routine.

If the longitudinal phase space is included, one has to
take into account the different arrival times of the particles
at the IP and in particular the finite length of the interaction
region. One way to handle longitudinal phase space is to
divide the macro–particle ensemble into several longitudi-
nal slices and then let the slices of both bunches propagate
through the slices of the other bunch applying transverse
kicks on a slice by slice basis. Note that this method has a
cost of O(N 2

s ) with Ns being the number of slices in use.
Another approach, called “2 + 1

2
d.o.f.”, is to first compute

the binned longitudinal line density, second compute the
average transverse phase space distribution of the ensemble
by projection of the 6–D coordinates to 4–D coordinates,
then compute the average transverse beam–beam kicks and
finally weight them with the line density of the opposing
beam. The “2 + 1

2
d.o.f.” is significantly faster than the
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slice method, but it cannot account for transverse longitu-
dinal correlation. Finally it is, of course, possible to extend
the PIC methods and possibly even the FMM based meth-
ods to cope with the beam–beam force in 3 d.o.f. How-
ever, for vanishing crossing angle this approach is maybe
overkill.

3.2 Collective Codes Presented at the Work-
shop

Codes for Hadrons: We will now attempt to summa-
rize the main features of the strong–strong hadron codes
presented the workshop.

1. W. Herr, M.–P. Zorzano and F. W. Jones :
MCMPT/HFMM code [10]

� 4–D code.

� Typically, a run with 10,000 particles for 16,000
turns takes 6 hours on a 600 MHz machine.

� The �–mode frequency found in simulations
agrees well with the predictions of Yokoya [11]
and Alexahin [12] based on linearized Vlasov
theory.

� It is planned to implement long range interac-
tions and 6–D phase space (without paralleliza-
tion).

2. J. Shi and L. Jin : MCMPT/PIC code [4]

� 4–D code.

� Uses typically 106 particles and a PIC mesh ex-
tending to �6�.

� With 106 particles the speed is 3 seconds per
turn.

� Simulations predict chaotic behavior of the cen-
troid motion above a beam–beam instability
threshold.

� Studies on suppression of instability and on the
importance of tune spread are ongoing.

3. M. Vogt : BBDeMomD [5]

� Contain higher order multipole kicks and RF–
dipoles.

� BBDeMo1D : WMPT code in 2–D phase space,
three limits from 4–D to 2–D [13, 11, 14] imple-
mented. Various Field solvers (direct O(N 2), or
O(N logN) in the case of the Chao–Ruth limit,
and GSA) [14].

– Yokoya factor for the Chao–Ruth limit
agrees well with predictions based on av-
eraging and linearized Vlasov theory [2].

– A typical run with 201�201 particles over
130,000 turns takes depending on the 2–D
limit and the field solver between 12 and 25
h on a 425 MHz Sun Ultra–80.

� BBDeMo2D : WMPT code in 4–D phase space.

– Kicks are computed alternatively by GSA,
FMM (smallN ) or HFMM.

– A typical run with 454 particles per beam
over 16,000 turns takes 6 days on a 425
MHz Sun Ultra–80.

– A parallel version is in progress.

– It is planned to implement MAD type lattice
reader and higher order symplectic integra-
tors [15].

4. M. Vogt : BBPFmD [5]

� Contains higher order multipole kicks and RF–
dipoles.

� BBPF1D : PF code in 2–D phase space, three lim-
its from 4–D to 2–D implemented. Various field
solvers and interpolation methods (orders) have
been implemented.

– Good agreement between BBPF1D and
BBDeMo1D. In 2–D the PF method is nor-
mally faster than WMPT and the turn by
turn evolution of the moments shows less
jitter.

� BBPF2D : PF code in 4–D phase space.

– The 4–D PF code is still in the development
phase.

– It is planned to implement the same features
as in BBDeMo2D.

Codes with Synchrotron Radiation: During this
workshop various codes that implement the effects of
damping and diffusion have been presented. This is an at-
tempt to summarize their main features.

1. R. L.Warnock : PF code for Vlasov–Fokker–Planck
[7, 1]

� 2–D phase space.

� Operator splitting : alternating time steps with
Vlasov evolution using PF and Fokker–Planck
evolution using a finite difference scheme.

� Applications other than beam–beam (sawtooth
instability, coherent synchrotron radiation) exist.

� A typical run with 201�201 grid takes 6.5 hours
for 30,000 turns on a 400 MHz work station.

� With this grid the code conserves probability to
1 part in 105 over several damping times.

2. J. Rogers and E. Anderson : ODYSSEUS [16]

� Adaptive 6–D MCMPT code for beam–beam.

� Typically 5000 particles in each beam and 15
longitudinal slices.
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� Uses different methods for computing the col-
lective transverse kicks on core and on halo par-
ticles.

� In the core the kicks are computed by a PIC
method (cloud in cell) and an FFT.

� The kicks on the halo particles are calculated in
the GSA.

� A typical run takes 3 seconds per turn on a 500
MHz PC.

� The simulations of the luminosity in CESR show
good agreement with the measurements.

� It is planned to implement machine errors.

3. S. Tzenov and Y. Cai : PIC code with reduced mesh
[17]

� 4–D MCMPT code with PIC (triangular shaped
cloud, cyclic reduction & FFT [8], numerical
differentiation).

� The effective mesh size is reduced by a Green’s
function method.

� The simulations show good agreement with the
measured luminosity in PEP–II.

� In collaboration with Ji Qiang (LANL):
the code has been parallelized and a parallel 6–D
code is in preparation.

Although not presented in this workshop we should at least
mention the code by K. Ohmi [18]. The code uses PIC
with an FFT of the derivative of the Green’s function and
computes the kicks directly.
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